
Complexity and Algorithms

J. D́ıaz

The pervasive nature of Computation

Computation: any process consisting of a sequence of local
steps that we want to perform, or to understand.

Computation is ubiquitous

Nature

Physics

String Theory

Computation is ubiquitous

Nature

Physics

String Theory

Mathematics

The 4 colour theorem Given any
separation of a plane into contiguous

regions, the regions can be legally
coloured using ≤ 4 colours.

Theorem proving There are not integers
a, b, c 6= 0 s.t. for any n > 2, an + bn = cn.

Mathematics

The 4 colour theorem Given any
separation of a plane into contiguous

regions, the regions can be legally
coloured using ≤ 4 colours.

Theorem proving There are not integers
a, b, c 6= 0 s.t. for any n > 2, an + bn = cn.

Economics

If your laptop can’t find it, neither can the
market Kamail Jain

Understanding the properties of markets that make them
actually reach equilibrium. Compute the rate to achieve
equilibrium. Predict the future behaviour of the market, with
today data.

Economics

If your laptop can’t find it, neither can the
market Kamail Jain

Understanding the properties of markets that make them
actually reach equilibrium. Compute the rate to achieve
equilibrium. Predict the future behaviour of the market, with
today data.

Electrical Engineering

Design reliable communication in
cloud computing

Optimise the design of a VLSI

Electrical Engineering

Design reliable communication in
cloud computing

Optimise the design of a VLSI

Information retrieval and manipulation

Find efficiently a document in the
web

Find efficiently two similar documents in the web

Information retrieval and manipulation

Find efficiently a document in the
web

Find efficiently two similar documents in the web

The algorithm

The algorithm is the language to describe computation: step by
step, local, mechanical procedure, which works for every input in
finite number of steps.

Formal definition of the algorithm:
Turing Machine

The algorithm coming of-age as the new language of
science, promise to be the most disrupting scientific
development since quantum mechanics.

B. Chazelle, The algorithm: Idiom of modern science (2001)

Computer Science is no more about computers than
astronomy is about telescopes.

Edsger W. Dijkstra, 1992

Algorithmics are known for a long time.

How to compute
√

n, for n ∈ N Baylonian (∼ XVI BC)

Given n, choose x0 ∼
√

n
from i = 0 to k do

xi+1 = (xi + n
xi

)/2

Then
√

n ∼ limi→∞ xi

The word Algorithms comes from
Muhamad ibn Musa al-Khwarizmi (VIII AC)
The Compendious Book on Calculation by
Completion and Balancing
(Liber algebrae et almucabala)

Algorithmics are known for a long time.

How to compute
√

n, for n ∈ N Baylonian (∼ XVI BC)

Given n, choose x0 ∼
√

n
from i = 0 to k do

xi+1 = (xi + n
xi

)/2

Then
√

n ∼ limi→∞ xi

The word Algorithms comes from
Muhamad ibn Musa al-Khwarizmi (VIII AC)
The Compendious Book on Calculation by
Completion and Balancing
(Liber algebrae et almucabala)

Do we have algorithms for all problems?

There are UDECIDIBLE problems.

Real example from project proposal as final project for CS in a
university X :
The purpose of this project is to create a debugger program. This
program will take as input the source code another program, and
will analyze that other program and determine if it will run to
completion, or have an error, or go into an infinite loop.

Halting problem: Given a computer
program, decide if it always halts.

The halting problem is undecidible

Do we have algorithms for all problems?

There are UDECIDIBLE problems.

Real example from project proposal as final project for CS in a
university X :
The purpose of this project is to create a debugger program. This
program will take as input the source code another program, and
will analyze that other program and determine if it will run to
completion, or have an error, or go into an infinite loop.

Halting problem: Given a computer
program, decide if it always halts.

The halting problem is undecidible

Do we have algorithms for all problems?

There are UDECIDIBLE problems.

Real example from project proposal as final project for CS in a
university X :
The purpose of this project is to create a debugger program. This
program will take as input the source code another program, and
will analyze that other program and determine if it will run to
completion, or have an error, or go into an infinite loop.

Halting problem: Given a computer
program, decide if it always halts.

The halting problem is undecidible

Some consequences of the halting problem

Goldbach’s conjecture (1742): Every even integer ≥ 2 can be
written as the sum of two primes.

6 = 3 + 3, 14 = 3 + 11, 60 = 7 + 53
If the halting problem was decidable then the Goldbach conjecture
would be solvable:

from i = 2 to ∞ do
if 2 ∗ i is not the sum of two primes, HALT.

The halting problem!
Experimentally, the Golbach conjecture has been verified up to
n ≤ 1018 by T. Olivera (2008)

Some consequences of the halting problem

Goldbach’s conjecture (1742): Every even integer ≥ 2 can be
written as the sum of two primes.

6 = 3 + 3, 14 = 3 + 11, 60 = 7 + 53
If the halting problem was decidable then the Goldbach conjecture
would be solvable:

from i = 2 to ∞ do
if 2 ∗ i is not the sum of two primes, HALT.

The halting problem!
Experimentally, the Golbach conjecture has been verified up to
n ≤ 1018 by T. Olivera (2008)

DECIDIBLE PROBLEMS

There is an algorithm to solve the problem for any input size.

Efficiency of an algorithm: asymptotic number of steps as function
of input size,

TIME: number of steps

SPACE: size of storage

Complexity measures must be independent of existing technology

DECIDIBLE=FEASIBLE?

Find the non-trivial factors of n

factor(n, i)
from k = 2 to

√
n do

if k | n return k
factor(n/k , k)

factor(n, 1)

Input: N = lg n.

The above algorithm must test 2
√

N and each iteration at a cost
N3.

With current technology, for
N = 2000 it would take > life span

DECIDIBLE=FEASIBLE?

Find the non-trivial factors of n

factor(n, i)
from k = 2 to

√
n do

if k | n return k
factor(n/k , k)

factor(n, 1)

Input: N = lg n.

The above algorithm must test 2
√

N and each iteration at a cost
N3.

With current technology, for
N = 2000 it would take > life span

Feasible Problems

P: class of problems having an efficient algorithm to find solutions.

Edmonds (1956),, Karp (1972)

efficient: polynomial number of steps, in the worst case.

Is 10101010

n lg n efficient?

YES (for sufficiently large input size)

Feasible Problems

P: class of problems having an efficient algorithm to find solutions.

Edmonds (1956),, Karp (1972)

efficient: polynomial number of steps, in the worst case.

Is 10101010

n lg n efficient?
YES (for sufficiently large input size)

Examples of problems in P

• Integer multiplication: n ×m. If N = max(n,m) then T = N2

(T = N lg N with clever trick)

• Eulerian tour: Given G = (V ,E) find a
tour that traverses all edges exactly once.

• Linear Programming: optimize linear
function f (~x), subject to constrains
A~x ≤ ~b.
Ellipsoid algorithm (Khachiyan), Interior
Methods (Karmarkar). Dantzing’s Simplex
is not always polynomial!

x2

x1

x3

• Primality test: Is 257 − 2 prime? (Agrawal-Kayal-Saxene).

Find the needle in the haystack: The class NP

NP: class of problems having efficient verification
algorithms of given solutions.
(Godel, Cook, Levin, Karp)

Problems in NP, finding a solution could take
≤ 2n

All P problems can also verify in poly-time
⇒ P⊆ NP.

P=NP?

Find the needle in the haystack: The class NP

NP: class of problems having efficient verification
algorithms of given solutions.
(Godel, Cook, Levin, Karp)

Problems in NP, finding a solution could take
≤ 2n

All P problems can also verify in poly-time
⇒ P⊆ NP.

P=NP?

P and NP

P: we can find a solution efficiently

NP: we can verify a solution efficiently

Conjecture: Finding is much difficult than verifying.

P6= NP

NP Problems

• Factoring: Find the non-trivial factors of 257 − 2.
Given (5)(156288505774077994650069306918569)(2017)
(939691588217) prove in poly-time that their product = 257 − 2.

• 3-SAT: Given a set of Boolean variables X = {x1, . . . , xn} and a
Bolean CNF φ = C1 ∨ · · · ∨ Cm on X , where each Ci is the
disjunction of exactly 3 literals on X , is there a truth assignment
A : X → {T ,F} s.t. A(φ) = T ?
GIven:
φ = (x1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x̄3).
and truth assignment A(x1) = A(x4) = T and A(x2) = A(x3) = F ,
prove in 3m steps that A(φ) = T .

NP Problems

• Hamiltonian tour: Given
G = (V ,E) find a tour that traverses
all vertices exactly once. Rudrata
(IXc), Hamilton (XIXc)

6

1 2

3

45

Given the solution prove in n2 that
indeed is a Hamiltonian tour. 6

1 2

3

45

• 3-colorability of planar graph:

Given the solution, prove in n2 that
indeed a legal coloring.

Millennium Problems

How to make $106

I Riemann Hypothesis

I Yang-Mills Theory

I P=NP

I Poincare Conjecture

I Navier-Stokes Equations

I Birch and Swinnerton-Dyer Conjecture

I Hodge Conjecture

Millennium Problems

How to make $106

I Riemann Hypothesis

I Yang-Mills Theory

I P=NP

I Poincare Conjecture - SOLVED (Pereman-03)

I Navier-Stokes Equations

I Birch and Swinnerton-Dyer Conjecture

I Hodge Conjecture

NP-Complete Problems

The most difficult subclass of problems in NP

All problems in the class NPC are computationally equivalent in
the sense that, if one problem is easy, all the problems in the class
are easy.

Therefore, if one problem in NPC proves to be in P ⇒ P=NP.

NPC PNPI

The world of NP

NPC Problems

• 3-SAT:
φ = (x1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x2 ∨ x̄3).

• Hamiltonian tour:
6

1 2

3

45

• Sudoku:

• 3-colorability of map:

All NPC have equivalent difficulty

To prove that a problem P2 ∈ NPC:
• P2 ∈ NP
• For a P1 ∈ NPC, P1 has to be reducible to P2.

A
Specific input

P2

Efficient algorithm

Any input for

P1

All NPC have equivalent difficulty

To prove that a problem P2 ∈ NPC:
• P2 ∈ NP
• For any P1 ∈ NPC, P1 has to be reducible to P2.

A
Specific input

P2

Any input for

Efficient algorithm

Efficient algorithm

A1

P1

All NPC have equivalent difficulty

To prove that a problem P2 ∈ NPC:
• P2 ∈ NP
• For any P1 ∈ NPC, P1 has to be reducible to P2.

P1

Specific input

P2

Any input for

Efficient algorithm

Efficient algorithm

A1

Efficient algorithm

A3 = A1A

A

All NPC have equivalent difficulty

An efficient algorithm for one of the NPC problems, would yield an
efficient algorithm for any NP problem.

If we had an efficient algorithm for 3-col. of map, it could be use
as a solver for any other NP problem. an efficient algorithm

Agorithm

(x1 ∨ ¯x236 ∨ x3) ∧ · · · ∧ (x̄1 ∨ x4 ∨ x9)

Efficient Algorithm
Efficient

The 3-col. problem as a solver for NPC problems

An efficient algorithm for one of the NPC problems, would yield an
efficient algorithm for any NP problem.

If we had an efficient algorithm for 3-col. of map, it could be use
as a solver for any other NP problem. an efficient algorithm

Truth assignment A : X → {T, F}

(x1 ∨ ¯x236 ∨ x3) ∧ · · · ∧ (x̄1 ∨ x4 ∨ x9)

Efficient Algorithm
Efficient
Agorithm

satisfying the formula

Efficient

The 3-col. problem as a solver for NPI problems

If there is an efficient algorithm for one NPC problem, it would
yield an efficient algorithm for factorize (which is NP but is not
known to be NPC).

Factorize 257 − 2

Efficient Algorithm
Efficient
Agorithm

Sovers for NPI

If there is an efficient algorithm for one NPC problem, it would
yield an efficient algorithm for factorize (which is NP but is not
known to be NPC).

(2017)(939691588217)

Efficient Algorithm
Efficient
Agorithm

Efficient

factorize 257 − 2

(5)(15628850577407794695006930618569)

Some Problems in NP (under P6= NP

Integer multiplication

NPC PNPI

Integer Linear Programming Linear Programming

3 SAT 2 SAT

Hammiltonian Tour Eulerian Tour

2-Coloring of plannar G

4-Coloring of Plannar G

Graph isomorphism

Factoring Primality

different fields

Over 5000 problems in

3-Coloring of plannar graphs

2-Coloring of graphs

k-Coloring of graphs

SAT

for k>2

Sodoku

The complexity zoo

About 500 complexity classes and their relation.

Exercise

Given a graph G = (V ,E) a spanning tree is a tree using a subset
of E and spanning all the nodes in V . If the graph has weight on
the edges, the greedy Jarnik, Prim algorithms computes in
poly-time the spanning tree with min sum weight of the edges.

3

 a

b

c

d

f

e

g

h

46

14

5

10
2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10
2

9

15

8

Exercise

Given a graph G = (V ,E) (without weights) determine which of
the following problems are NP-complete and which are solvable in
polynomial time:

I Given a set of nodes L ⊂ V , find a spanning tree s.t. its sets
of leaves include L.

I Given a set of nodes L ⊂ V , find a spanning tree s.t. its sets
of leaves are exactly L.

I Given a set of nodes L ⊂ V , find a spanning tree s.t. its sets
of leaves is included in L.

I Given an integer k > 0, find a spanning tree s.t. it has at
most k leaves.

Exercise. Solution

Given a graph G = (V ,E) (without weights) determine which of
the following problems are NP-complete and which are solvable in
polynomial time:

I Given a set of nodes L ⊂ V , find a spanning tree s.t. its sets
of leaves include L. P

I Given a set of nodes L ⊂ V , find a spanning tree s.t. its sets
of leaves are exactly L. NP-complete

I Given a set of nodes L ⊂ V , find a spanning tree s.t. its sets
of leaves is included in L. NP-complete

I Given an integer k > 0, find a spanning tree s.t. it has at
most k leaves. NP-complete.

Proving P vs. NP

At least there are 53 existing proofs of P=NP or P6=NP!
26 ”proving” P=NP; 24 ”proving” P6=NP; 3 ”proving” the
problem is undecidible
(see http://www.win.tue.nl/ gwoegi/P-versus-NP.htm)

• 1987: T. Swart gave linear programming formulations of
polynomial size for the Hamiltonian cycle problem. Since LP is P
and Hamiltonian cycle is NP-hard ⇒ P=NP.
(1988) Mihalis Yannakakis proved that expressing the Hamiltonian
cycle problem by a symmetric LP requires exponential size.
(STOC-88, JCSS-91)

Proving P vs. NP

At least there are 53 existing proofs of P=NP or P6=NP!
26 ”proving” P=NP; 24 ”proving” P6=NP; 3 ”proving” the
problem is undecidible
(see http://www.win.tue.nl/ gwoegi/P-versus-NP.htm)

• 1987: T. Swart gave linear programming formulations of
polynomial size for the Hamiltonian cycle problem. Since LP is P
and Hamiltonian cycle is NP-hard ⇒ P=NP.

(1988) Mihalis Yannakakis proved that expressing the Hamiltonian
cycle problem by a symmetric LP requires exponential size.
(STOC-88, JCSS-91)

Proving P vs. NP

At least there are 53 existing proofs of P=NP or P6=NP!
26 ”proving” P=NP; 24 ”proving” P6=NP; 3 ”proving” the
problem is undecidible
(see http://www.win.tue.nl/ gwoegi/P-versus-NP.htm)

• 1987: T. Swart gave linear programming formulations of
polynomial size for the Hamiltonian cycle problem. Since LP is P
and Hamiltonian cycle is NP-hard ⇒ P=NP.
(1988) Mihalis Yannakakis proved that expressing the Hamiltonian
cycle problem by a symmetric LP requires exponential size.
(STOC-88, JCSS-91)

In the year 2009:

• (March) R. Valls Hidalgo-Gato P=NP.

• (April) Xinwen Jiang P=NP.
http://xinwenjiang.googlepages.com/

• (June) Arto Annila P6=NP. http://arxiv.org/abs/0906.1084.

• (July) Andre L. Barbosa P 6=NP.
http://arxiv.org/abs/0907.3965.

• (Sept.) Yann Dujardin P=NP http://arxiv.org/abs/0909.3466.

• (Sept.) Luigi Salemi P=NP http://arxiv.org/abs/0909.3868.

• (Dec.) Ari Blinder P 6=NP.
http://sites.google.com/site/ariblindercswork/.

Why are some problems qualitatively harder than others?

For many problems, there are a few
instances that make the problem
hard. (That is why Local Search
techniques work well). However, the
adversary could design problems that
are as hard as possible, forcing us to
solve them in the worst case.

The power of random choices

Average Analysis
Deterministic
Algo. →

Deter. Algo.
→

Randomized
Algorithm

INPUT → 0100100111010

For example, if we choose uniformly at random one of the n!
possible inputs to sort a table with n keys, using quicksort, the
expected number of steps will be 1.7n lg n + O(n), while it is
known the worst case could take Θ(n2) steps (ordered input)

The power of random choices

Average Analysis
Deterministic
Algo. →

Deter. Algo.
→

Randomized
Algorithm

INPUT → 0100100111010

For example, if we choose uniformly at random one of the n!
possible inputs to sort a table with n keys, using quicksort, the
expected number of steps will be 1.7n lg n + O(n), while it is
known the worst case could take Θ(n2) steps (ordered input)

An example: primality testing of an integer

Given an integer n, to decide if it is a prime is in P, but the best
current algorithm is too slow O((lg n)7).

Recall Fermat’s little theorem: For any n prime and for all a ∈ Z+
n ,

an−1 ≡ 1 mod n,

where Z+
N = {a|a ∈ {1, 2, . . . , n − 1}}.

Algorithm to test if a given n ∈ N is prime

a := random (1, n − 1)
if an−1 ≡ 1 mod n

return prime
else return not-prime

The complexity of the Monte-Carlo algorithm is O(lg n)3 steps.

An example: primality testing of an integer

Given an integer n, to decide if it is a prime is in P, but the best
current algorithm is too slow O((lg n)7).
Recall Fermat’s little theorem: For any n prime and for all a ∈ Z+

n ,

an−1 ≡ 1 mod n,

where Z+
N = {a|a ∈ {1, 2, . . . , n − 1}}.

Algorithm to test if a given n ∈ N is prime

a := random (1, n − 1)
if an−1 ≡ 1 mod n

return prime
else return not-prime

The complexity of the Monte-Carlo algorithm is O(lg n)3 steps.

An example: primality testing of an integer

Given an integer n, to decide if it is a prime is in P, but the best
current algorithm is too slow O((lg n)7).
Recall Fermat’s little theorem: For any n prime and for all a ∈ Z+

n ,

an−1 ≡ 1 mod n,

where Z+
N = {a|a ∈ {1, 2, . . . , n − 1}}.

Algorithm to test if a given n ∈ N is prime

a := random (1, n − 1)
if an−1 ≡ 1 mod n

return prime
else return not-prime

The complexity of the Monte-Carlo algorithm is O(lg n)3 steps.

An example: primality testing of an integer

Given an integer n, to decide if it is a prime is in P, but the best
current algorithm is too slow O((lg n)7).
Recall Fermat’s little theorem: For any n prime and for all a ∈ Z+

n ,

an−1 ≡ 1 mod n,

where Z+
N = {a|a ∈ {1, 2, . . . , n − 1}}.

Algorithm to test if a given n ∈ N is prime

a := random (1, n − 1)
if an−1 ≡ 1 mod n

return prime
else return not-prime

The complexity of the Monte-Carlo algorithm is O(lg n)3 steps.

Correctness

The following result is a easy consequence of Lagrange’s Theorem
(if S is a subgroup of the abelian group A, ⇒ |S | | |A|):
If an−1 6≡ 1 mod n for some a ∈ Z∗n, then this also happens with
at least half of the a ∈ Z∗n.
Therefore the probability of mistake is ≤ 1/2.

If we repeated the algorithm k-times, the probability of mistake is
≤ 1/2k , which for instance k = 4 could be quite small!.

Correctness

The following result is a easy consequence of Lagrange’s Theorem
(if S is a subgroup of the abelian group A, ⇒ |S | | |A|):
If an−1 6≡ 1 mod n for some a ∈ Z∗n, then this also happens with
at least half of the a ∈ Z∗n.
Therefore the probability of mistake is ≤ 1/2.

If we repeated the algorithm k-times, the probability of mistake is
≤ 1/2k , which for instance k = 4 could be quite small!.

Unfortunately,

Fermat little theorem IS NOT iff:
∃n : an−1 ≡ 1(mod n) with n NOT a prime.

The Carmichael numbers, which are very rare (255 with value
< 100000000) 561, 1105, 1729, · · · but fool the above primality
test.

The previous theorem can be easily adapted to take into
consideration the Carmichael numbers, with the same complexity.

For difficult problems randomness does not help:

Theorem (Yao, Impagliazo-Wigderson)

If P 6=NP, randomness adds no power to NPC problems.

However, randomness speeds up problems in P:
Primality, sorting, order statistics, min-cut,

The difficulty of problems: A paradigmatic example

Recall the 3-Satisfiability Problem (3SAT) is: given a formula
φ = C1 ∧ · · · ∧ Cm, where each Ci contais 3 literals, decide if there
is an assignment of the boolean variables such that it makes φ
satisfiable.

φ = (x1 ∨ x̄2 ∨ x4)∧ (x̄1 ∨ x̄2 ∨ x̄4)∧ (x1 ∨ x̄3 ∨ x̄4)∧ (x̄1 ∨ x2 ∨ x̄3).

It is NP-complete.
Does it mean we can forget about solving most of the instances of
it?

The difficulty of problems: A paradigmatic example

Recall the 3-Satisfiability Problem (3SAT) is: given a formula
φ = C1 ∧ · · · ∧ Cm, where each Ci contais 3 literals, decide if there
is an assignment of the boolean variables such that it makes φ
satisfiable.

φ = (x1 ∨ x̄2 ∨ x4)∧ (x̄1 ∨ x̄2 ∨ x̄4)∧ (x1 ∨ x̄3 ∨ x̄4)∧ (x̄1 ∨ x2 ∨ x̄3).

It is NP-complete.
Does it mean we can forget about solving most of the instances of
it?

The Davis-Putnam procedure

Backtracking algorithm (could be exponential time)

Prune the formulae by assigning truth values to literal

Example

φ = (x1 ∨ x̄2 ∨ x4)∧ (x̄1 ∨ x̄2 ∨ x̄4)∧ (x1 ∨ x̄3 ∨ x̄4)∧ (x̄1 ∨ x2 ∨ x̄3).

Making x1 = 1 yields (x̄2 ∨ x̄4) ∧ (x̄2 ∨ x̄4)
Now make x4 = 0 and we get a sat truth assignment A(x1) = 1
and A(x4) = 0

The Davis-Putnam : Example 2

φ =
(x1∨x2∨x3)∧(x1∨ x̄2)∧(x2∨ x̄3)∧(x2∨ x̄3)∧(x3∨ x̄1)∧(x̄1∨ x̄2∨ x̄3).

A(x1) = 1⇒ (x2 ∨ x̄3) ∧ (x3) ∧ (x̄2 ∨ x̄3).
A(x3) = 1⇒ (x2) ∧ (x̄2) Backtrack

A(x1) = 0⇒ (x2 ∨ x3) ∧ (x̄2) ∧ (x2 ∨ x̄3).
A(x2) = 0⇒ (x3) ∧ (x̄3) So φ does not have a sat assignment!

For many SAT inputs, (variations of) Davis-Putnam yield a
solution quite fast.

Goldberg, Purdom, Brown, 1982 DP can solved a random instance
of SAT with length m in O(m2).

The Davis-Putnam : Example 2

φ =
(x1∨x2∨x3)∧(x1∨ x̄2)∧(x2∨ x̄3)∧(x2∨ x̄3)∧(x3∨ x̄1)∧(x̄1∨ x̄2∨ x̄3).

A(x1) = 1⇒ (x2 ∨ x̄3) ∧ (x3) ∧ (x̄2 ∨ x̄3).
A(x3) = 1⇒ (x2) ∧ (x̄2) Backtrack

A(x1) = 0⇒ (x2 ∨ x3) ∧ (x̄2) ∧ (x2 ∨ x̄3).
A(x2) = 0⇒ (x3) ∧ (x̄3) So φ does not have a sat assignment!

For many SAT inputs, (variations of) Davis-Putnam yield a
solution quite fast.

Goldberg, Purdom, Brown, 1982 DP can solved a random instance
of SAT with length m in O(m2).

The Davis-Putnam : Example 2

φ =
(x1∨x2∨x3)∧(x1∨ x̄2)∧(x2∨ x̄3)∧(x2∨ x̄3)∧(x3∨ x̄1)∧(x̄1∨ x̄2∨ x̄3).

A(x1) = 1⇒ (x2 ∨ x̄3) ∧ (x3) ∧ (x̄2 ∨ x̄3).
A(x3) = 1⇒ (x2) ∧ (x̄2) Backtrack

A(x1) = 0⇒ (x2 ∨ x3) ∧ (x̄2) ∧ (x2 ∨ x̄3).
A(x2) = 0⇒ (x3) ∧ (x̄3) So φ does not have a sat assignment!

For many SAT inputs, (variations of) Davis-Putnam yield a
solution quite fast.

Goldberg, Purdom, Brown, 1982 DP can solved a random instance
of SAT with length m in O(m2).

The Davis-Putnam : Example 2

φ =
(x1∨x2∨x3)∧(x1∨ x̄2)∧(x2∨ x̄3)∧(x2∨ x̄3)∧(x3∨ x̄1)∧(x̄1∨ x̄2∨ x̄3).

A(x1) = 1⇒ (x2 ∨ x̄3) ∧ (x3) ∧ (x̄2 ∨ x̄3).
A(x3) = 1⇒ (x2) ∧ (x̄2) Backtrack

A(x1) = 0⇒ (x2 ∨ x3) ∧ (x̄2) ∧ (x2 ∨ x̄3).
A(x2) = 0⇒ (x3) ∧ (x̄3) So φ does not have a sat assignment!

For many SAT inputs, (variations of) Davis-Putnam yield a
solution quite fast.

Goldberg, Purdom, Brown, 1982 DP can solved a random instance
of SAT with length m in O(m2).

Random Inputs for 3-SAT

Given n variables, the set of possible clauses is 23
(n
3

)
.

To generate a random instance for 3-SAT on n variables and with
m = rn clauses:

• Choose uar m = rn clauses, each with probability 1

(n
3)

• Go over the variables in the selected m clauses, negate each
variable with probability = 1/2.

Fn,m = set of formulas generated in this way.

Density of a random formulae

Density of φ ∈ Fn,m is defined by r = n
m .

Examples:

φ1 = (x1 ∨ x̄2 ∨ x4)∧ (x̄1 ∨ x̄2 ∨ x̄4)∧ (x1 ∨ x̄3 ∨ x̄4)∧ (x̄1 ∨ x2 ∨ x̄3).
has r = 1

φ2 =
(x1∨x2∨x4)∧(x1∨x̄2∨x4)∧(x̄1∨x̄2∨x̄4)∧(x1∨x̄3∨x̄4)∧(x̄1∨x̄2∨x̄3)∧
(x̄2∨x3∨x4)∧(x̄1∨x2∨x̄3)∧(x̄2∨x3∨x̄4)∧(x2∨x̄3∨x̄4)∧(x̄2∨x̄3∨x̄4)
has r = 0.4

Phase transition 3-SAT

Experimentally: Mitchell, Selman, Levesque (1991) for 3-SAT
For the Davis-Putnam backtrack algorithm:

Phase transition 3-SAT

For r < 4.2 whp formulae are SAT
For r > 4.2 whp formulae are SAT

Phase transition 3SAT: The physics approach

Using techniques from statistical physics on very large instances of
3SAT, physics people where able to give theoretical non-rigorous
evidence that the threshold for 3SAT occurs at

rc = 4.27

Mézard, Parisi, Zecchina (2002), Mézard, Zecchina (2002),

Rigorous approach

Consider a random 3SAT formula φ ∈ Fn,rn

Upper bound: r > rc = 4.27 Get a value as low as possible of r
(≥ 4.27) such that whp φ is not SAT. (Variations on the first
moment)

Lower bound: r < rc = 4.27 Consider an easy to analyze
algorithm. Get a value as large as possible of r (r ≤ 4.27) such
that whp the algorithm produces a satisfying assignment for φ.

Status on Formal bounds to 3-SAT. Upper-bound:

r = 5.1909 (1983) Franco, Paull (and others)
r = 5.19− 10−7 (1992) Frieze and Suen
r = 4.758 (1994) Kamath, Motwani, Palem, Spirakis
r = 4.667 (1996) Kirousis, Kranakis, Krizanc.
r = 4.642 (1996) Dubois, Boufkhad
r = 4.602 (1998) Kirousis, Kranakis, Krizac, Stamatiou
r = 4.596 (1999) Janson, Stamatiou, Vamvakari (1999)
r = 4.571 (2007) Kaporis, Kirousis, Stamatiou, Vamvakari
r = 4.506 (1999) Dubois, Boukhand, Mandler
r = 4.4907 (2008) D́ıaz, Kirousis, Mitsche, Pérez
rc = 4.27 Experimental threshold (Replica Method)

Status on Formal bounds to 3-SAT. Lower bound:

rc = 4.27Experimental threshold (Replica Method)
r > 3.52 Kaporis, Kirousis, Lalas (2003)
r > 3.52 Hajiaghayi-Sorkin (2003)
r > 3.42 Kaporis, Kirousis, Lalas (2002).
r > 3.26 Achlioptas and Sorkin (2001).
r > 3.145, Achlioptas (2000).
r > 3.003, Frieze, Suen (1992).
r > 2.99 Chao, Franco (1986).
r > 2.66 Chao, Franco (1986).

First moment: Basic technique for upper bounds

Let φ be a random formula and S(φ) the set of its satisfying truth
assignments. Using Markov inequality

Prm∗ [φ is sat] =Pr [|S(φ)| ≥ 1] ≤ E [|S(φ)|] .

Must compute E [|S(φ)|]

Notice that given a truth assignment A and 3 variables xi , xj , xk

then there is only one clause on xi , xj , xk which is not SAT by A.
Therefore, out of the 8

(n
3

)
clauses only

(n
3

)
evaluate to 0 under any

given A.

E [|S(φ)|] =
∑

A∈S(A) Pr [A � φ] = |{<A,φ> |A�φ}|
|{φ}|

E [|S(φ)|] = (2(7/8)r)n to make it < 1 we need

r ≥ 5.1909

5.12 is far above the experimental 4.27, because there could be a
few formulas with many sat. truth assignment which contribute
too much to E [|S(φ)|].

General methods for lower bounds to 3SAT threshold

Given a random φ in Fn,m, m = rn consider an easy to analyze
heuristic, to find a A � φ,

Let rl denote the lower bound for the density that we try to
compute. Prove that for all r < rl , the heuristic succeeds whp.

The Unit Clause algorithm Chao, Franco (1986).

UC φ
if there is a 1- clause then

select u.a.r. one 1-clause and satisfy it (forced step)
else select u.a.r xi and assign u.a.r. 0 or 1 (free step)

Chao and Franco got rl = 2.66.

General methods for lower bounds to 3SAT threshold

Given a random φ in Fn,m, m = rn consider an easy to analyze
heuristic, to find a A � φ,

Let rl denote the lower bound for the density that we try to
compute. Prove that for all r < rl , the heuristic succeeds whp.

The Unit Clause algorithm Chao, Franco (1986).

UC φ
if there is a 1- clause then

select u.a.r. one 1-clause and satisfy it (forced step)
else select u.a.r xi and assign u.a.r. 0 or 1 (free step)

Chao and Franco got rl = 2.66.

The Near Future
Today networks more and more tend to have the following
characteristics:

I Agents are mobile

I It is pervasive

I Massive scale and exponential growth

I self-organizer and highly descentralized

I User self-interest

I Device heterogeneity

I Emergent behavior

Old Example: Internet and the WWW

The Near Future
Today networks more and more tend to have the following
characteristics:

I Agents are mobile

I It is pervasive

I Massive scale and exponential growth

I self-organizer and highly descentralized

I User self-interest

I Device heterogeneity

I Emergent behavior

Old Example: Internet and the WWW

Today large-scale networks present an emergent behavior, which
makes it very difficult to predict future behavior.

The emergent system is much more complex and powerful that the
components. But it depends of single behaviour of individuals.

The sharing of utilities creates serious problems of security and
privacy

The massive growth of social networks are changing social
behaviour.

Need new paradigms for complexity and algorithms

Some hot tasks:

T1 Develop probabilistic topological models for MANETS (Mobile
Ad-hoc NETworkS) and other social networks, and establish
mechanisms for proving that the model is consistent with observed
data or that a model fits better than other.

The goal of a network modeling and analysis is the ability to
understand network behavior so we can make more informed
decisions at future junctures. How better to search the network
and get the maximum performance of it.

T2 How topology can be exploited in wireless networks? How to
deal with high level of failures? What are the alternatives to
classical routing? (Routing with mobility should be done on the
fly.)

Some hot tasks:

T1 Develop probabilistic topological models for MANETS (Mobile
Ad-hoc NETworkS) and other social networks, and establish
mechanisms for proving that the model is consistent with observed
data or that a model fits better than other.

The goal of a network modeling and analysis is the ability to
understand network behavior so we can make more informed
decisions at future junctures. How better to search the network
and get the maximum performance of it.

T2 How topology can be exploited in wireless networks? How to
deal with high level of failures? What are the alternatives to
classical routing? (Routing with mobility should be done on the
fly.)

Search in networks

Today most of the search engines are keyword-based, which limits
ability of finding non textual data, and semantic search.
Algorithmic community has played a key role in the development of
the actual search engines:

I HITS algorithm [Kleinberg 1999],

I PageRank algorithm [Page, Brin, et al. 1999]

T3 Use the global characteristics of new networks to design
efficient searching, mining and retrieval of information

Search in networks

Today most of the search engines are keyword-based, which limits
ability of finding non textual data, and semantic search.
Algorithmic community has played a key role in the development of
the actual search engines:

I HITS algorithm [Kleinberg 1999],

I PageRank algorithm [Page, Brin, et al. 1999]

T3 Use the global characteristics of new networks to design
efficient searching, mining and retrieval of information

Agent’s incentive.

In a network of agents, when agents cooperate to compute, they
tend to behave differently.

In wireless and ad-hoc networks, bandwidth is controlled by
individual nodes. Network performance suffers dramatically if one
(key) node fails.

In the last years, quite a few progress has been made in the design
of incentive-compatible protocols for some internet problems P2P
file distribution, internet based auctions, etc.)
But with pervasive networks, new ideas are needed:
T4 Can one agent determine whether another agent is responding
to incentives?

T5 Develop new concepts of rationality and stability, beyond the
known ones (Nash equilibria, etc.) sufficient for the analysis of the
forthcoming networks?

Agent’s incentive.

In a network of agents, when agents cooperate to compute, they
tend to behave differently.

In wireless and ad-hoc networks, bandwidth is controlled by
individual nodes. Network performance suffers dramatically if one
(key) node fails.

In the last years, quite a few progress has been made in the design
of incentive-compatible protocols for some internet problems P2P
file distribution, internet based auctions, etc.)
But with pervasive networks, new ideas are needed:
T4 Can one agent determine whether another agent is responding
to incentives?
T5 Develop new concepts of rationality and stability, beyond the
known ones (Nash equilibria, etc.) sufficient for the analysis of the
forthcoming networks?

Algorithmic Mechanism Design.

In the future, internet-based payment mechanisms will probably be
the most used way of economical transaction.
In Economics, mechanism design deals with how to incentivize
individual selfish agents so that their actions result in a globally
desirable outcome.
Nisan and Ronen [2001] created the new field of algorithmic
mechanism design, by considering the computational efficiency in
the economical concept. The following years saw an array of
interesting algorithmic results dealing with problems in internet as
auctions (e-Bay) and min-cost routing.

T6 Design, analyze and deploy distributed algorithmic mechanisms
for networked-computational problems like internet auctions, P2P
file management, multicast cost sharing. Develop new notions of
complexity and equilibrium for distributed mechanisms as they are
needed in the new computing-network setting.

Set a new computational theory for the new systems

T7 Give the definition(s) that a computational system must satisfy
to be a network:

I Should there be several models or a generic one with few
parameters?

I How are the networks created? How do they evolve?

I Need a new notion of efficiency, taking into consideration new
parameters, communication, bandwidth used, etc.

I Which critical resources should be considered?

I Which bounds on these resources must be satisfied for the
computation to be considered efficient.

T8 Formulate a new complexity theory for computing on networks:

I The concept of equivalently powerful networks, according to
the computational tasks that they can and cannot do. This
may need the concept of reduction among
networked-computational problems.

I Is there a universal network?

The new complexity theory of networking will need new radical
ideas, starting from the concept of efficiency.

The general theory of networking to be developed, should include
the pervasive network models for biological and social systems.

T8 Formulate a new complexity theory for computing on networks:

I The concept of equivalently powerful networks, according to
the computational tasks that they can and cannot do. This
may need the concept of reduction among
networked-computational problems.

I Is there a universal network?

The new complexity theory of networking will need new radical
ideas, starting from the concept of efficiency.

The general theory of networking to be developed, should include
the pervasive network models for biological and social systems.

In future networks, mechanism design could play an important role
to understanding the behavior of the highly decentralized,
networks, full of selfish users.

T9 Develop methods for the identification of market structures in
which particular network protocols work well, in spite of the
existence of conditions in which these protocols are know to work
poorly.
T10 What types of coalitions should network designer of pervasive
networks be concerned about? What type of coalitions would be a
natural part of pervasive network development?

In future networks, mechanism design could play an important role
to understanding the behavior of the highly decentralized,
networks, full of selfish users.
T9 Develop methods for the identification of market structures in
which particular network protocols work well, in spite of the
existence of conditions in which these protocols are know to work
poorly.

T10 What types of coalitions should network designer of pervasive
networks be concerned about? What type of coalitions would be a
natural part of pervasive network development?

In future networks, mechanism design could play an important role
to understanding the behavior of the highly decentralized,
networks, full of selfish users.
T9 Develop methods for the identification of market structures in
which particular network protocols work well, in spite of the
existence of conditions in which these protocols are know to work
poorly.
T10 What types of coalitions should network designer of pervasive
networks be concerned about? What type of coalitions would be a
natural part of pervasive network development?

References: complexity

C. Papadimitriou: Computational Complexity Addison-Wesley,
1994

A. Doxiadis, C. Papadimitriou, A. Papadatos, A. Donna:
LOGICOMIX. Bloomsbury. 2009.
Lance Fortnow: The status of the P vs NP Problem CACM, Nov.
2009, 78-86.

Richard Lipton: http://rjlipton.wordpress.com/

Lance Fortnow: http://weblog.fortnow.com/

Luca Trevisan: http://lucatrevisan.wordpress.com/

References: algorithms

Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani:
Algorithms, McGraw Hill, 2007.

Jon Kleinberg, Eva Tardos: Algorithm Design, 2006

T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms, 3rd Ed. MIT Press, 2009.

Steven Skiena: The Algorithm Design Manual. 2nd Ed Springer
2008.

Michael Mitzenmacher, Eli Upfal: Probobility and Computing.
CUP, 2005.

Michael Mitzenmacher: http://mybiasedcoin.blogspot.com/
Daniel Lemire: http://www.daniel-lemire.com/blog/

