
Chapter 9
Verifying and Validating Simulations

Nuno David, Nuno Fachada, and Agostinho C. Rosa

Abstract Verification and validation are two important aspects of model building.
Verification and validation compare models with observations and descriptions of
the problem modelled, which may include other models that have been verified
and validated to some level. However, the use of simulation for modelling social
complexity is very diverse. Often, verification and validation do not refer to
an explicit stage in the simulation development process, but to the modelling
process itself, according to good practices and in a way that grants credibility to
using the simulation for a specific purpose. One cannot consider verification and
validation without considering the purpose of the simulation. This chapter deals
with a comprehensive outline of methodological perspectives and practical uses
of verification and validation. The problem of evaluating simulations is addressed
in four main topics: (1) the meaning of the terms verification and validation in
the context of simulating social complexity; (2) types of validation, as well as
techniques for validating simulations; (3) model replication and comparison as
cornerstones of verification and validation; and (4) the relationship of various
validation types and techniques with different modelling strategies.

Why Read This Chapter?

To help you decide how to check your simulation—both against its antecedent
conceptual models (verification) and external standards such as data or other
simulations (validation)—and in this way help you to establish the credibility of
your simulation. In order to do this the chapter will point out the nature of these
processes, including the variety of ways in which people seek to achieve them.
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9.1 Introduction

The terms verification and validation (V&V) are commonly used in science but
their meaning may be controversial in the natural and the social sciences. Putting
aside the epistemological underpinnings of the terms, in simulation the distinction
of meaning has a mere pragmatic nature inherited from computer science and
software engineering. Often, verification is used in the context of evaluating the
computational implementation of a model in terms of the researchers’ intentions. In
turn, validation typically refers to an evaluation of the credibility of the model as a
representation of the subject modelled.

In disciplines that make use of computational models, the role of V&V is
related to the need of evaluating models along the simulation development process.
Basically, the very idea of V&V is comparing models with observations and
descriptions of the problem modelled. This may include other models that have been
verified and validated to some level, or even the implementation of replications in
order to verify and validate models in more depth.

This chapter introduces a methodological perspective on V&V and describes
different strategies and techniques to validate models of social complexity. Some
aspects of what can be called either verification or validation are also discussed,
namely comparison between models and model replication, whereon verification
and validation are superimposed or indistinguishable. These are important but fre-
quently neglected methods of promoting V&V, particularly since social simulation
models can be very sensitive to implementation details (making them hard to verify),
and data from social systems can be difficult or even impossible to collect (making
the respective models hard to validate).

The use of simulation for modelling social complexity is very diverse. Often,
V&V do not refer to an explicit stage in the simulation development process, but
to the modelling process itself according to good practices and in a way that grants
credibility to using the simulation for a specific purpose. Normally, the purpose is
dependent on different strategies and dimensions, along which simulations can be
characterised, with reference to different kinds of claims intended by the modeller,
such as theoretical claims, empirical claims or simply subjunctive theoretical claims.
The term subjunctive is used when very abstract simulations are used for thinking
about scenarios in possible worlds, such as describing “what would happen if
something were the case.” There cannot be V&V without considering the purpose
of the simulation.

In the next section of the chapter, we will deal with the meaning of the terms
V&V in the context of the simulation development process. In Sect. 9.3, methods
and techniques commonly associated with validation are described. The comparison
and replication of simulation models as an essential aspect of V&V is discussed in
Sect. 9.4. The chapter closes with Sect. 9.5, where the relationship of validation with
different modelling strategies is described.
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9.2 The Simulation Development Process

Several chains of intermediate models are developed before obtaining a satisfactory
verified and validated model. What does it mean to verify and validate a model
in social simulation? Is there a fundamental difference between verifying and
validating models? The purpose of this section is to define the role of V&V within
the scope of the simulation development process.

The most common definitions of V&V are imported from computer science,
as well as from technical and numerical simulation,1 having intended distinct—
although epistemologically overlapping—meanings. The reason for distinguishing
between the terms derives from the practice of determining the suitability of certain
models for representing two distinct subjects of inquiry. This is represented in
Fig. 9.1, in which V&V are related to a simplified model development process.
Two conceptual models mediate between two subjects of inquiry. The latter are (1)
the target theory or phenomenon and (2) the executable computational model. The
conceptual model on the right, designated here as the pre-computational model,
is basically a representation in the minds and writing of the researchers, which
presumably represents the target. This model must be implemented as an executable
computational model, by going through a number of intermediate models such
as formal specification or textual programs written in high-level programming
languages.

The analysis of the executable model gives rise to one or more conceptual models
on the left, here designated as post-computational models. They are constructed
based on the output of the computational model, often with the aid of statistical
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Fig. 9.1 Verification and validation related to the model development process (David 2009)

1Numerical simulation refers to simulation for finding solutions to mathematical models, normally
for cases in which mathematics does not provide analytical solutions. Technical simulation stands
for simulation with numerical models in computational sciences and engineering.
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packages, graphing and visualisation. The whole construction process results in
categories of description that may not have been used for describing the pre-
computational model. This is the so-called idea of emergence, when interactions
among model components specified through pre-computational models at some
level of description give rise to different categories of model descriptions identified
in the executable model at macro levels of observation, expressed through post-
computational models.

As an example consider the culture dissemination model of Axelrod (1997b)
which has a goal of analysing the phenomena of social influence. At a micro-
level of description, a pre-computational model defines: (a) the concept of actors
distributed on a grid; (b) the concept of culture of each actor, specified as a set of five
features; and (c) the interaction mechanisms specified with a bit-flipping schema, in
which the probability of interaction between two actors is set proportionately to the
similarity between two cultures. The executable model is then explored and other
categories of descriptions resulting from the interaction of individual cultures may
be defined. These are associated with macro properties of interest and conditions in
which they form, such as the concepts of regions and zones on the grid. A great deal
of the simulation proposed by Axelrod concerns investigating properties of regions
and zones in the executable model, giving rise to a proposed conceptual, post-
computational model, which expresses traits such as the relation between the size of
a region formed and the number of features per individual culture. These concepts
are interpreted in relation to the target social phenomena of social influence.

We will now situate the role of V&V in the modelling process of social
simulation.

9.2.1 What Does It Mean to Verify a Computational Model?

Computational model verification is defined as checking the adequacy among
conceptual models and computational models (see also Chap. 7 in this volume,
Galán et al. 2017). Consider the lower quadrants of Fig. 9.1. They are concerned
with ensuring that the pre-computational model has been implemented adequately
as an executable computational model, according to the researcher’s intentions in the
parameter range considered, and also that the post-computational model adequately
represents the executable model in the parameter range considered.2 In short, the
three models must correspond to each other adequately, relative to the same target
they are meant to represent.

At this point you might question the meaning of adequately. A minimal definition
could be the following: adequateness means that the inputs, outputs and the
mechanisms post-computationally modelled from the executable computational
model are consistent with the ones specified through the pre-computational models,

2Verification in the left quadrant of Fig. 9.1 is sometimes known as “internal validation.”
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in accordance with the researcher’s intentions. However, the outcomes of computer
programs in social simulation are often unintended or not known a priori and thus
the verification process requires more than checking that the executable model does
what it was planned to do. The goal of the whole exercise is to assess logical
inferences within, as well as between, the pre- and the post-computational models.
This requires assessing whether the post-computational model—while expressing
emergent concepts that the pre-computational model may not have been intended
to express—is consistent with the latter. From a methodological point of view this
is a complicated question, but from a practical perspective one might operationally
define the verification problem with the following procedures:

(a) For some pre-computational model definable as a set of input/output pairs in a
specified parameter range, the corresponding executable model is verified for
the range considered if the corresponding post-computational model expresses
the same set of inputs/outputs for the range considered.

(b) For some pre-computational model defined according to the researcher and/or
stakeholders’ intentions in a specified parameter range, the corresponding
executable model is verified for the range considered if the corresponding post-
computational model meets the researchers and/or stakeholders’ expectations
for the range considered.

Note that both procedures limit the verification problem to a clearly defined
parameter range. The first option is appropriate when quantitative data is available
from the target with which to test the executable model. This is normally not the
case, leaving the second option as the suitable path for the verification process. This
is possible since the aim is to assess the appropriateness of the relations that may be
established between micro-levels of description specified in the pre-computational
model and macro-levels of description expressed through post-computational mod-
els, usually amenable to evaluation by researchers and stakeholders.

In any case, the verifiability of a simulation is influenced by the process used to
develop that simulation. The tools used to implement the executable computational
model are a major factor affecting verification (Sargent 2013). The use of high-level
simulation packages has the potential to simplify verification, since the majority
of common model building blocks are provided, and these are typically already
verified. Arguably, this is even more so in the case of open source toolkits, such
as NetLogo (Wilensky 1999) or Repast Simphony (North et al. 2013), where, in
addition to the developers themselves, the respective user communities perform
verification of the provided simulation blocks and modules. Community members
can not only detect bugs, but also correct them due to the open and collaborative
nature of these projects. When such modelling toolkits are used, verification mainly
consists of guaranteeing that the model has been correctly implemented using the
available modules.

However, while the use of modelling toolkits reduces the programming and
verification effort, it typically increases simulation times (Fachada et al. 2017a) and
limits the modeller’s flexibility in implementing non-standard behaviours (Sargent
2013). As such, it is often necessary to directly implement models using general-
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purpose programming languages. This is not a black or white choice, since several
simulation toolkits offer the option of developing models using general-purpose
programming languages (e.g. Repast Simphony), and/or provide high-performance
and scalable workflows, with Repast HPC (Collier and North 2013) being a case in
point.

When the direct use of general-purpose programming languages is involved, the
adoption of good programming practices for designing and implementing the model
is fundamental. Techniques such as object-oriented design, modularity and encapsu-
lation not only simplify testing and debugging, but also promote incremental model
development and the mapping of programming units (e.g. classes or functions) to
model concepts, thus making computational models easier to understand, extend and
modify. Additionally, defensive programming methodologies, such as assertions and
unit tests, are well suited for the exploratory nature of simulation, making models
easier to debug and verify.

Two important verification methods, traces and structured walk-throughs, com-
plement the techniques discussed thus far. The former entails following a specific
model variable (e.g. the position of an agent or the value of a simulation output)
throughout the execution of the computational model, with the goal of assessing
whether the implemented logic is correct and if the necessary precision is obtained.
Modelling toolkits and programming language tools typically offer the relevant
functionality, making the use of traces relatively simple (Sargent 2013). In turn,
structured walk-throughs consist of having more than one person reading and
debugging a program. All members of the development team are given a copy of a
particular module to be debugged and the module developer goes through the code
but does not proceed from one statement to the next until everyone is convinced that
a statement is correct (Law 2015).

Nevertheless, and while the techniques described here are an important part of
the verification process, a computational model should only be qualified as verified
with reasonable confidence if it has been successfully replicated and/or aligned with
a valid pre-existing model. We will return to this topic in greater detail in Sect. 9.4.

9.2.2 What Does It Mean to Validate a Model?

Model validation is defined as ensuring that both conceptual and computational
models are adequate representations of the target. The term “adequate” in this sense
may stand for a number of epistemological perspectives. From a practical point of
view we could assess whether the outputs of the simulation are close enough to
empirical data.

Alternatively, we could assess various aspects of the simulation, such as if the
mechanisms specified in the simulation are well accepted by stakeholders involved
in a participative-based approach. In Sect. 9.3 we will describe the general idea of
validation as the process that assesses whether the pre-computational models—put
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forward as models of social complexity—can be demonstrated to represent theories
or aspects of social behaviour able to give rise to post-computational models that
are, at some given level, consistent with the onset theories or similar to real data.

Given the model development process described, is there any fundamental
difference between verifying and validating simulations? Rather than being a sharp
difference in kind it is a distinction that results from the computational method.
Whereas verification is focused on the assessment of micro and macro concepts and
inferences in the process of programming, observing and interpreting computational
models, validation is focused on the evaluation of such inferences and concepts as
representations of the target social phenomenon or theory.

In paraphrasing Axelrod (1997a), at first sight, we could say that the problem
is whether an unexpected result is a reflection of the computational model, due to
a mistake in the implementation of the pre-computational model, or is a surprising
consequence of the pre-computational model itself. Unfortunately, the problem is
more complicated than that. In many cases mistakes in the code may not be qualified
simply as mistakes, but only as one interpretation among many others possible
for implementing a conceptual model. Nevertheless, from a practical viewpoint
there may be still good reasons to make the distinction between V&V. A number
of established practices exist for the corresponding quadrants of Fig. 9.1. We will
address some of these in the following sections.

9.3 Validation Approaches

We offered a conceptual definition of validation in Sect. 9.2.2. Had we given an
operational definition, things would have become somewhat problematical. Models
of social complexity are diverse and there is no definitive and guaranteed criterion of
validity. As Amblard et al. (2007) remarked, “validation suggests a reflection on the
intended use of the model in order to be valid, and the interpretation of the results
should be done in relation to that specific context.”

A specific use may be associated with different methodological perspectives
for building the model, with different strategies, types of validity tests, and
techniques (Fig. 9.2). Consider the kind of subjunctive, metaphorical models such
as Schelling’s (1971). In these models there is no salient validation step during the
simulation development process. Design and validation walk together. The intended
use is not to show that the simulation is plausible against a specific context of social
reality but to propose abstract or schematic mechanisms as broad representations of
classes of social phenomena. In other cases, the goal may be modelling a specific
target domain, full of context, with use of empirical data and significant amounts
of rich detail. Whereas in the former a good practice could be modelling with the
greatest parsimony possible so as to have a computational model sanctionable by
human beings and comparable to other models, parsimony can be in opposition to
the goal of descriptive richness and thus inappropriate to the latter case.
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Purpose of models

General goal of simulating social complexity
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(diverse)
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(subjunctive models, context-specific models)

Fig. 9.2 Validation implies considering the purpose of the model

There are also different methodological motivations behind the use of a model,
such as those conceived to predict or explain and those merely conceived to describe.
Regardless of what method is used, the reproduction of characteristics of the object
domain is important, but this can be assessed through rather different approaches
during the model development process. If it is prediction you are seeking, validation
consists of confronting simulated behaviour with the future behaviour of the target
system (however, attempting to establish numerical prediction is not a normal goal
in simulation). If it is explanation, validation consists of building plausible mech-
anisms that are able to reproduce simulated behaviour similar to real behaviour. If
the goal is the more general aim of descriptiveness, explanation may probably be a
goal as well, and a creative integration of ways for assessing the structure and results
of the model, from quantitative to qualitative and participatory approaches, will be
applied.

In conclusion, one should bear in mind that there is no one special method for
validating a model. However, it is important to assess whether the simulation is
subjected to good practices during its conception, whether it fits the intended use of
the model builder and whether it is able to reproduce characteristics of the object
domain. Assessing whether the goals of the modellers are well stated and the models
themselves are well described in order to be understood and sanctioned by other
model builders are sine qua non conditions for good simulation modelling.

In the remainder of this section, we revise the purpose of validating simulations
along three dimensions: (1) the general goal of validation in social complexity;
(2) basic methodological conceptions of validity types; and (3) typical validation
techniques used in social simulation.
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9.3.1 The Goal of Validation: Goodness of Description

If one is using a predictive model, then the purpose of the model is to predict either
past or future states of the target system. On the other hand, one may strive for a
model that is able to describe the target system with satisfactory accuracy in order
to become more knowledgeable about the functioning of the system, to exercise
future and past scenarios, and to explore alternative designs or inform policies.

The objective in this section is to define the purpose of validation in terms of
the purpose of simulating social complexity, which we will define as being of good
description. This position entails that there is no single method or technique for
validating a simulation. A diversity of methods for validating models is generally
applied.

In the rest of this chapter we adopt the agent-based paradigm for modelling. A
conceptual understanding of validation, similar but more general than Moss and
Edmonds (2005), will be used:

The purpose of validation is to assess whether the design of micro-level mechanisms, put
forward as theories of social complexity validated to arbitrary levels, can be demonstrated
to represent aspects of social behaviour and interaction that are able to produce macro-level
effects either (i) broadly consistent with the subjacent theories; and/or (ii) qualitatively or
quantitatively similar to real data.

By broad consistency we mean the plausibility of both micro specification and
macro effects accounted as general representations of the target social reality. In its
most extreme expression, plausibility may be evaluated on a metaphorical basis.
By qualitative similarity to real data we mean a comparison with the model in
terms of categorical outcomes, accounted as qualitative features, such as the shape
of the outcomes, general stylised facts, or dynamical regimes. As for quantitative
similarity we mean the very unlikely case in which the identification of formal
numerical relationships between aggregate variables in the model and in the target—
such as enquiring as to whether both series may draw from the same statistical
distribution—proves to be possible.

Notice that this definition is general enough to consider both the micro-
level mechanisms and macro-level effects assessed on a participatory basis. It is
also general enough to consider two methodological practices for building social
simulation models, namely the extent to which models should be based on formal
theories or on the intuition of the model builders and stakeholders—an issue that
we will come back to later. These are omnipresent methodological questions in
the social simulation literature and are by no means irrelevant to the purpose of
simulation models.

Suppose that on the basis of a very abstract model, such as the Schelling model,
you were to evaluate the similarity of its outputs with empirical data. Then you will
probably not take issue with the fact that the goal of predicting future states of the
target would be out of the scope of simulation research for that kind of modelling.
However, despite the belief that other sorts of validation are needed, this does not
imply excluding the role of prediction, but simply emphasises the importance of
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description as the goal of simulating social complexity. In truth, what could be
more contentious in assessing the Schelling model is the extreme simplicity used
to describe the domain of social segregation. The descriptive power of agent-based
models (ABMs) makes them suited to model social complexity. Computational
modelling corresponds to a process of abstraction, in that it selects some aspects of a
subject being modelled, like entities, relations between entities and change of state,
while ignoring those that may be considered less relevant to the questions that are of
interest to the model builder. The expressiveness of ABMs allows the researcher to
play with intuitive representations of distinct aspects of the target, such as defining
societies with different kinds of agents, organisations, networks and environments,
which interact with each other and represent social heterogeneity. By selecting
certain aspects of social reality into a model, this process of demarcation makes
agent-based modelling suited to represent sociality as perceived by researchers and
often by the stakeholders themselves.

The descriptive power of simulation is on par with the diversity of ways used
for informing the construction and validation of models, from theoretic approaches
to the use of empirical data or stakeholder involvement. At any rate, measuring
the goodness of fit between the model and real data expressed with data series is
neither the unique nor a typical criterion for sanctioning a model. The very idea of
using a diversity of formal and informal methods is to assess the credibility of the
mechanisms of the model as good descriptions of social behaviour and interaction,
which must be shown to be resilient in the face of multiple tests and methods, in
order to provide robust knowledge claims and allow the model to be open to scrutiny.

9.3.2 Broad Types of Validity

When we speak about types of validity we mean three general methodological per-
spectives for assessing whether a model is able to reproduce expected characteristics
of an object domain: validation through prediction, validation through retrodiction
and validation through structural similarity. Prediction refers to validating a model
by comparing the states of a model with future observations of the target system.
Retrodiction compares the states of the model with past observations of the target
system. Lastly, structural similarity refers to assessing the realism of the structure
of the model in terms of empirical and/or theoretical knowledge of the target
system (see also Gross and Strand 2000). In practice, all three approaches are
interdependent and no single approach is used alone.

9.3.2.1 Validity Through Prediction

Validation through prediction requires matching the model with aspects of the target
system before they were observed. The logic of predictive validity is the following:
if one is using a predictive model—in which the purpose of the model is to predict
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future states of the target system—and the predictions prove satisfactory in repeated
tested events, it may be reasonable to expect the model outcomes to stay reliable
under similar conditions (Gross and Strand 2000). The purpose of prediction is
somewhat problematic in social simulation:

– Models of social complexity usually show nonlinear effects in which the
global behaviour of the model can become path-dependent and self-reinforcing,
producing high sensitivity to initial conditions, which limits the use of predictive
approaches.

– Many social systems show high volatility with unpredictable events, such as
turning points of macroeconomic trade cycles or of financial markets that are
in practice (and possibly in principle) impossible to predict; refer to Moss and
Edmonds (2005) for a discussion on this.

– Many social systems are not amenable to direct observation, change too slowly,
and/or do not provide enough data to be able to compare model outcomes. Most
involve human beings and are too valuable to allow repeated intervention, which
hinders the acquisition of knowledge about its future behaviour. Policies based
on false predictions could have serious consequences, thus making the purpose
of prediction unusable (Gross and Strand 2000).

While quantitative prediction of the target system behaviour is rare or simply
unattainable, prediction in general is not able to validate per se the mechanisms of
the model as good representations of the target system. In the words of Troitzsch
(2004), “What simulations are useful to predict is only how a target system might
behave in the future qualitatively.” But a different model using different mechanisms
that could lead to the same qualitative prediction may always exist, thus providing a
different explanation for the same prediction. More often, the role of predicting
future states of the target system becomes the exploration of new patterns of
behaviour that were not identified before in the target system, whereby simulation
acquires a speculative character useful as a heuristic and learning tool. What we are
predicting is really new concepts that we had not realised as being relevant just by
looking into the target.

9.3.2.2 Validity Through Retrodiction

The difference from retrodiction to prediction is that in the former the intention is
to reproduce already observed aspects of the target system. Given the existence of a
historical record of facts from the target system, the rationale of retrodictive validity
for a predictive model is the following: If the model is able to reproduce a historical
record consistently and correctly, then the model may also be trusted for the future
(Gross and Strand 2000). However, as we have mentioned, predictive models of
social complexity are uncommon in simulation. Explanation rather than prediction
is the usual motive for retrodiction. The logic of retrodictive validity is the follow-
ing: If a model is able to consistently reproduce a record of past behaviours of the
target system, then the mechanisms that constitute the model are eligible candidates
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for explaining the functioning of the target system. Nevertheless, retrodiction alone
is not sufficient to assess the validity of the candidate explanations:

– Underdetermination: Given a model able to explain a certain record of behaviours
or historical data, there will always be a different model yielding a different
explanation for the same record.

– Insufficient quality of data: In many cases it is impossible to obtain long historical
series of social facts in the target system. In the social sciences the very notion
of social facts or data is controversial, can be subjective, and is not dissociable
from effects introduced by the measurement process. Moreover, even when data
is available it may not be in a form suitable to be matched to the bulk of data
generated by simulation models.

Underdetermination and insufficient data suggest the crucial importance of
domain experts for validating the mechanisms specified in the model. A model
is only valid provided that both the generated outcomes and the mechanisms
that constitute the model are sanctioned by experts in the relevant domain. The
importance of validating the mechanisms themselves leads us to the structural
validity of the model, which neither predictive nor retrodictive validity is able to
assess alone.

9.3.2.3 Validity Through Structural Similarity

In practice, the evaluation of a simulation includes some kind of prediction and
retrodiction, based on expertise and experience. Given the implementation of micro-
level mechanisms in the simulation, classes of behaviour at the macroscopic scale
are identified in the model and compared to classes of behaviour identified in the
target. Similarly, known classes of behaviour in the target system are checked
for existence in the simulation. The former case is generally what we call the
“surprising” character of simulations in which models show something beyond what
we expect them to. However, only an assessment of the model from various points
of view, including its structure and properties on different grains and levels, will
truly determine whether it reflects the way in which the target system operates. For
instance, do agents’ behaviour, the constituent parts and the structural evolution of
the model match the conception we have about the target system with satisfactory
accuracy? These are examples of the elements of realism between the model and the
system that the researcher strives to find, which requires expertise in the domain on
the part of the person who builds and/or validates the model.

9.3.3 Validation Techniques

In this section we describe validation techniques used in social simulation. Some
are used as common practices in the literature and most of the terminology has



9 Verifying and Validating Simulations 185

been inhered from simulation in engineering and computer science, particularly
from the reviews of validation and verification in engineering by Sargent (2013).
All techniques that we describe can be found in the literature, but it would be rare
to find a model in which only one technique was used, consistent with the fact that
the validation process should be diverse. Also, there are no standard names in the
literature and some techniques overlap with others.

9.3.3.1 Face Validity

Face validity is a general kind of test used both before and after the model is put
to use. During the model development process, the various intermediate models are
presented to persons who are knowledgeable about the problem in order to assess
whether they are compatible with the expert’s understanding and reasonable for their
purpose (Sargent 2013). Face validity may be used for evaluating the conceptual
model, the components thereof, and the behaviour of the computational models
in terms of categorical outcomes or direct input/output relationships. This can be
accomplished via documentation, graphing visualisation models, and animation of
the model as it moves through time. Visualisation of model outputs (including a
brief look at model animation) is analysed in Chap. 10 of this volume (Evans et al.
2017). Insofar as this is a general kind of test, it is used in several iterations of the
model.

9.3.3.2 Turing Tests

People who are knowledgeable about the behaviour of the target system are asked
if they can discriminate between system and model outputs (Sargent 2013; Law
2015). The logic of Turing tests is the following: If the outputs of a computational
model are qualitatively or quantitatively indistinguishable from the observation of
the target system, a substantial level of validation has been achieved.

Note that the behaviour of the target system does not need to be observed
directly in the cases where a computational direct representation is available. For
example, suppose that videos of car traffic are transformed into three-dimensional
scenes, whereby each object in the scene represents a car following the observed
trajectory. If an independent investigator is not able to distinguish the computational
reproduction from an agent-based simulation of car traffic, then a substantial level of
validation has been obtained for the set of behaviours represented in the simulation
model.

9.3.3.3 Historical Validity

Historical validity is a kind of retrodiction where the results of the model are
compared with the results of previously collected data. If only a portion of the
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available historical data is used to design the model then a related concept is called
out-of-sample tests in which the remaining data are used to test the predicative
capacity of the model.

9.3.3.4 Event Validity

Event validity compares the occurrence of particular events in the model with
the occurrence of events in the source data. This can be assessed at the level of
individual trajectories of agents or at any aggregate level. Events are situations
that should occur according to pre-specified conditions, although not necessarily
predictable. Some events may occur at unpredictable points in time or circum-
stances. For instance, if the target system data shows arbitrary periods of stable
behaviours interwoven with periods of volatility with unpredictable turning points,
the simulation should produce similar kinds of unpredictable turning events.

9.3.3.5 Validity of Simulation Output

Since data is hard to collect in social systems, investigating the behaviour of
simulation output becomes a crucial model validation technique (Sargent 2013).
This can be performed by running the simulation with different parametrisations
and checking if the output is reasonable (Law 2015), either based on subjective
expert opinion when using “typical” simulations parameters, or by objectively
evaluating output behaviour under trivial or extreme parametrisations. For instance,
concerning the latter, if interaction among agents is nearly suppressed the modeller
should be surprised if such activities as trade or culture dissemination continues in
a population.

The concept of internal validity (Sargent 2013) or verification between the exe-
cutable computational model and post-computational models (lower left quadrant
of Fig. 9.1) can also be considered here, since it directly relates to simulation
output behaviour. In order to assess the level of stochastic variability in a model,
a number of simulation runs are performed using different random number streams.
A sizeable level of variability between simulation runs can question the model at
different levels. For example, the validity of simulation output for the executable
computational model may be disputed, or the stability of a given policy (and the
parametrisation that expresses it) in the overall model may be challenged.

For a more in-depth look at issues concerning simulation output behaviour, we
refer the reader to the following references. Visualisation-oriented approaches for
understanding simulation output are debated in Chap. 10 of this volume (Evans et al.
2017). Visualisation, and statistical and analytical analysis of model outputs are
examined and reviewed by Lee et al. (2015). For a pure statistical outlook, Fachada
et al. (2015) discuss a generic and systematic approach for evaluating time-series
output of simulation models.
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9.3.3.6 Solution Space Exploration

The techniques discussed in Sect. 9.3.3.5 are useful for basic output validation under
specific parametrisations. However, they do not provide a general understanding
of how input parameters influence model behaviour, nor they consider the broader
picture of overall model assumptions, which encompass not only input parameters,
but also internal model structure, employed submodels and model elements, as well
as their inter-relations. In solution space exploration, model assumptions are varied
in order to reach a better understanding of how the assumptions of interest affect the
model.

The exploration of the solution space can be as simple as testing “what
if” scenarios for observing model behaviour under different inputs—similar to
what was discussed in the previous subsection—or follow a more systematic
approach based on carefully designed experiments (Montgomery 2012). The latter
approach aims to get the maximum amount of information from the model with
the minimum number of simulation runs (Pereda et al. 2015), and is generally
more efficient than hand-guided runs where alternative model configurations are
experimented with (Law 2015). Nonetheless basic hand-guided experiments are also
valuable for model validation, namely when trying different conceptual- or system-
level assumptions. Conceptual-level assumptions include internal mechanisms or
submodels that constitute the larger model (e.g. the decision processes of the
agents, their learning mechanisms or their interaction topology), while system-level
assumptions involve low-level elements of the model (e.g. agent activation regimes).
If changing elements at the system-level determines different behaviours of the
model that cannot be adequately interpreted, then the validity of the model can be
compromised. The case of changing elements at conceptual levels is more subtle
and the validity of the results must be assessed by the researcher with reference to
the validity of the composing elements of the model. This is basically a kind of
cross-model or cross-element validation, as described in Sect. 9.4.

The exploration of the solution space is often undertaken with one or more
targeted objectives in mind, especially in the case of formally designed experiments.
Typical objectives include optimisation, calibration, uncertainty analysis and sensi-
tivity analysis (Lee et al. 2015). While these objectives may overlap, brief definitions
and their potential roles in model validation can be given. In model optimisation, the
researcher is interested in finding parameters or assumptions that minimise some
cost or elicit specific model events or behaviour, which can be directly related with
event validity, as discussed in Sect. 9.3.3.4. In turn, calibration is concerned with
finding the assumptions that maximise the agreement of the model behaviour with
the target system behaviour, thus making it a crucial aspect in model validation
and in the model development process. Uncertainty analysis provides measures
related to the reliability of results and how do input uncertainties propagate through
to the collected outputs. These measures affect simulation output validity and
directly influence the interpretation of data obtained through sensitivity analysis.
The latter is arguably the most common objective when exploring the solution
space of a model. In essence, small perturbations are applied to model assumptions
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in order to determine which ones have the greatest effect on output behaviour
(Evans et al. 2017). This information can be used to improve model accuracy and
reduce output variance—issues directly related with model validation—and also to
promote model parsimony by fixing inconsequential parameters and simplifying
assumptions, reducing dimensionality of the input parameter space and the model’s
computational cost (Law 2015; Lee et al. 2015). Conversely, sensitivity analysis
may also point to underspecified assumptions, which may require additional detail
in order to accurately represent some aspect of the target system (Law 2015). If the
output remains unpredictable even with controlled changes, the modeller should be
concerned about making claims about the model.

A number of techniques for sampling the solution space are described in the
modelling and simulation literature. The one-factor-at-a-time (OFAT) approach is
one of the simplest sampling techniques. The effects of individual assumptions
(factors) on model behaviour are analysed in isolation by iterating each one over a
set of discretised levels while keeping the other factors unchanged (Lee et al. 2015).
Unfortunately, this technique ignores possible interactions between factors (Law
2015). This issue is handled by factorial-type designs, for which the different factor
levels are combined in specific configurations (e.g. full factorial, fractional factorial
or central composite designs) (Pereda et al. 2015). Space-filling designs are another
type of sampling technique, and aim to cover the solution space more evenly (Pereda
et al. 2015). Monte Carlo random sampling is probably the most common space-
filling approach, consisting in sampling each parameter range randomly. However,
care should be taken with this approach since clustered observations and empty
spaces are bound appear by chance. Space-filling alternatives such as quasi-Monte
Carlo or Latin Hypercube Sampling (McKay et al. 1979) cover the input space more
evenly and are often preferred. In turn, sampling based on meta-heuristics, such
as genetic algorithms, can search for pre-specified output behaviours. Thus, such
techniques are commonly used when the researcher wishes to estimate parameters
for calibration and/or optimisation purposes (Miller 1998; Calvez and Hutzler 2005;
Stonedahl and Wilensky 2010).

Since the vast majority of the models of interest in social simulation are
stochastic, one should also consider the issue of having to perform several runs
with different seeds for each sampled assumption set in order to reduce the
uncertainty about the expected output value. Consequently, there is a trade-off
between assumption space coverage and output accuracy, which can severely limit
the exploration of models with long execution times (Pereda et al. 2015). This issue
can be minimised with the use of metamodels, which can act as computationally
inexpensive proxies of more complex models (Lee et al. 2015). A metamodel, or a
model of a model, can be used for predicting the original model’s response for non-
simulated assumption sets or finding combinations of assumptions that optimise (i.e.
minimise or maximise) a response (Law 2015). A metamodel usually takes the form
of a regression function relating inputs with an output response, typically a statistic
representative of model behaviour. Statistical learning techniques such as regression
analysis, Gaussian process modelling (Kriging), neural networks or random forests
are commonly used for building the metamodel function (Law 2015; Pereda et al.
2015).
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9.3.3.7 Participatory Approaches for Validation

Participatory approaches refer to the involvement of stakeholders both in the design
and the validation of a model. Such an approach, also known as Companion
Modelling (Barreteau et al. 2001), assumes that model development must be
itself considered in the process of social intervention, where dialogue among
stakeholders, including both informal and theoretical knowledge, is embedded in
the model development process. Rather than just considering the final shape of
the model, both the process and the model become instruments for negotiation and
decision making. Documentation and visualisation techniques can play a crucial role
in bridging the opinions and intentions of all interested parties. Such approaches are
particularly suited for policy or strategy development. This topic is discussed in
Chap. 12 “Participatory Approaches” (Barreteau et al. 2017).

9.4 Replicating and Comparing Models

Computational models in social science can be very sensitive to implementation
details, and the influence that seemingly negligible aspects such as data structures or
sequences of events can have on simulation results is striking (Merlone et al. 2008).
Furthermore, model implementations can be considerably elaborate, making them
prone to programming errors (Will and Hegselmann 2008). This can seriously affect
V&V when data from the system being modelled cannot be obtained easily, cheaply
or at all—often the case in social simulation. Moreover, even if data were available,
the goodness of fit between real and simulated data, albeit reflecting evidence about
the validity of the model as a data-generating process, does not provide evidence
on how it operates. Model replication—the reimplementation of an existing model
and the replication of its results—is a potential but frequently neglected solution to
this problem (Will and Hegselmann 2008; Thiele and Grimm 2015). Replicating a
model in a different context will sidestep the biases associated with the language or
toolkit used to develop the original model, bringing to light inconsistencies between
conceptual and computational models (Edmonds and Hales 2003; Wilensky and
Rand 2007).

Replication strongly contributes to the V&V of simulation models (Wilensky
and Rand 2007; Thiele and Grimm 2015). Verification is improved because if two
or more distinct implementations of a conceptual model yield equivalent results,
it is more likely that the implemented models correctly describe the conceptual
model (Wilensky and Rand 2007). In turn, validation is stimulated since its very
idea is comparing models with other descriptions of the problem modelled, and
this may include cross-model validation, i.e. the comparison with other simulation
models that have been validated to some level. Thus, it is reasonable to assume
that a computational model cannot be considered fully verified and validated until
it has been successfully replicated (Edmonds and Hales 2003). Nonetheless, the
most important reason for replicating and comparing models is simply one of good
scientific practice, since replication is the gold standard against which scientific
claims are evaluated (Peng 2011).
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In the remainder of this section we discuss replication and comparison of
simulation models under three different perspectives. First, in Sect. 9.4.1, we
distinguish the terminology and origins of the different goals related to model
replication and comparison. Next, in Sect. 9.4.2, we go over the best practices in
developing models so that they may be replicated by other researchers in the future.
Finally, in Sect. 9.4.3 we discuss a number of model comparison techniques.

9.4.1 Model Replication, Model Alignment or Submodel
Comparison?

A model replication study commonly assesses the extent to which building com-
putational models that draw on the same conceptual, usually published, model give
results compatible with the ones reported for the latter. If the new results are similar
to the published results, then the confidence in the correspondence between the
computational and the conceptual models is increased. Replication is represented
in Fig. 9.3.

The work of Edmonds and Hales (2003) is particularly informative and worthy
of reference. Edmonds and Hales performed two independent replications of a
previously published model involving co-operation between self-interested agents.
Several shortcomings were found in the original model, leading the authors to
conclude that unreplicated simulation models and their results cannot be trusted.
The issue was found to be a subtle difference in one of the submodels, which lead
to different conclusions about the functioning of the overall model.

The term model alignment is frequently used as a synonym for model replication.
However, its meaning is somewhat more subtle, as it is more related with the
extent to which models can be coupled or docked so that their consequences and
results are consistent with each other. In its most general form, this concerns both
to V&V. After Axtell et al. (1996), the term became associated with the process
of determining whether different published models describing the same class of
social phenomena produce the same results. Usually the alignment or docking of

Published
conceptual model A

and results

Computational
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Computational
model A”

results compare
results

Fig. 9.3 Model replication
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Fig. 9.4 Model alignment, also referred to as docking

two models A and B requires modifying certain aspects of model B—for instance
turning off a specific feature—in order to become equivalent to model A. This is
represented in Fig. 9.4.

The work of Axtell et al. (1996) is arguably the most-cited attempt to align
two distinct but similar models. Rather than re-implementing Axelrod’s culture
dissemination model, Axtell and colleagues focused on the general case of aligning
two models that reflected slightly distinctive mechanisms. For this purpose, Epstein
and Axtell’s Sugarscape model (1996) was progressively simplified in order to
align with the results obtained by Axelrod’s culture dissemination model (1997b).
They concluded that comparing models developed by different researchers and
with different tools (i.e. programming languages and/or modelling environments),
can lead to exposing bugs, misinterpretations in model specification, and implicit
assumptions in toolkit implementations.

Model alignment has been further investigated in a series of meetings called
model-to-model (M2M) workshops (Rouchier et al. 2008). The M2M workshops
attract researchers interested in understanding and promoting the transferability of
knowledge between model users.

Submodel comparison, often referred to as cross-element validation, rather than
comparing whole models, compares the results of a model whose architecture of
the agents differs only in a few elements. The goal is to assess the extent to
which changing elements of the model architecture produces results compatible
with the expected results of the (larger) model. It is essentially an exercise in
composing different submodels within a larger model, and is related to solution
space exploration since submodels are varied, and the consequences of that variation
are analysed and compared. In this process, the overall validity of the larger
model with reference to the validity of each one of the submodels can also be
assessed. For instance, one may study the effects of using a model with agents in a
bargaining game employing either evolutionary learning or reinforcement learning
strategies, and assess which one of the strategies produces results compatible with
theoretical analysis in game theory (Takadama et al. 2003). Submodel comparison
is represented in Fig. 9.5.

Submodel comparison can also be used as a model replication or alignment
aid. For example, Radax and Rengs (2009) proposed a method for replicating
insufficiently described ABMs, consisting in systematically varying ambiguous
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Fig. 9.5 Submodel comparison, also referred to as cross-element validation

model elements in order to align the replicated model with the original one. More
generally, if two simulations do not align, trying out different assumptions or
submodels is a practical way of finding the source of errors or mismatches. This
type of study is greatly facilitated when computational models are implemented in
a modular fashion, as discussed in Sect. 9.2.1. If submodels or model elements are
implemented as separate modules in the computational model, it becomes much
simpler to change or swap them in order to perform submodel comparisons.

9.4.2 Developing Replicable Models

An important aspect when developing a simulation model is to guarantee that it may
be replicated by other researchers. Designing and programming for replicability
involves a number of aspects that should be considered. Simulations are often a
mix of conceptual descriptions and hard technical choices about implementation.
The author who reports a model should assume that a replication or alignment may
later be tried and thus should be careful about providing detailed information for
future use. Some of the best practices include, but are not limited to:

– Effective documentation about the conceptual model should be provided, prefer-
ably in the form of a structured natural language description (Müller et al. 2014),
such as the ODD protocol, discussed in Chap. 15 (Grimm et al. 2017) of this
volume.The ODD protocol (Overview, Design concepts, Details) is one of the
most widely used templates for making model descriptions more understandable
and complete, providing a comprehensive checklist that covers many of the
key features that can define a model. The ODD + D protocol (Müller et al.
2013) extends the ODD protocol for models in which human-decision making
is simulated, often the case in social simulation.

– The model’s source code should be made available, given that it is the model’s
definitive implementation, not subject to the vagueness and uncertainty possibly
associated with verbal descriptions (Wilensky and Rand 2007; Müller et al.
2014). If possible, an open source simulation platform should be utilised to
implement the model, thus fostering software reuse in order to make simulations



9 Verifying and Validating Simulations 193

reliable and more comparable to each other. Maximum model exposure is
achieved if the simulation is runnable on the browser. This is much simpler
nowadays, with technologies such as HTML5 and JavaScript dispensing the
need for browser plug-ins. ABM toolkits such as AgentScript (Densmore 2016)
and AgentBase (Wiersma 2015) use this approach. In any case, making the
computational model widely available and easily runnable is crucial for others
to be able to experiment with it.

– Besides source code availability, documentation about the computational model
should also be provided in the form of (1) detailed source code comments, and
(2) a user guide and/or technical report. The former should clearly explain what
each code unit (e.g. function or class) does, while the latter should describe the
program’s architecture, preferably with the aid of visual description standards
such as UML diagrams. In either case, the computational model documentation
should contain information about technical options where the translation from
the conceptual model was neither straightforward nor consensual.

– Detailed information about the results should be made publicly available. This
includes statistical methods and/or scripts implementing or using them, raw
simulation outputs, distributional information, sensitivity analyses performed or
qualitative measures. A number of specialised scientific data repositories exist
for this purpose (Assante et al. 2016; Amorim et al. 2015). Furthermore, there
is an increasing awareness of how important it is to have published, citable
and documented data available in the scholarly record due to its crucial role in
reproducible science (Altman et al. 2015; Kratz and Strasser 2014).

The CoMSES Net Computational Model Library (Rollins et al. 2014), an
open digital repository for disseminating computational models associated with
publications in the social and life sciences, should be highlighted in this regard
since it enforces some of the best practices discussed above. Models are organised
as searchable entries, by title, author or other relevant metadata. A formatted citation
is shown for each entry so that researchers who use the model can easily credit its
creators. Model entries have separate sections for code, documentation, generated
outputs, solution exploration analyses and other relevant information. The library
accepts not only original models, but also explicitly welcomes replications of
previous studies. It also offers a certification service that verifies (1) if the model
code successfully compiles and runs, and (2) if the model adheres to documentation
best practices, with the ODD protocol being the recommended documentation
template.

9.4.3 Model Comparison Techniques

Replication is evaluated by comparing the outputs of the original computational
model against the output of the replicated implementation (Thiele and Grimm 2015).
However, how do we determine whether or not two models produce equivalent
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output behaviour? Axtell et al. (1996) defined three kinds of equivalence or levels
of similarity between model outputs: numerical identity, relational alignment and
distributional equivalence. The first, numerical identity, implies exact numerical
output and is difficult to demonstrate for stochastic models in general and social
complexity models in particular. Relational alignment between outputs exists if they
show qualitatively similar dependencies with input data, which is frequently the only
way to compare a model with another which is inaccessible (e.g. implementation
has not been made available by the original author), or with a non-controllable
“real” social system. Lastly, distributional equivalence between implementations
is achieved when the distributions of results cannot be statistically distinguished.
What this shows is that at conventional confidence probabilities the statistics
from different implementations may come from the same distribution, but it does
not prove that this is actually the case. In other words, it does not prove that
two implementations are algorithmically equivalent. Nonetheless, demonstrating
equivalence for a larger number of parametrisations increases the confidence that
the implementations are in fact globally equivalent (Edmonds and Hales 2003).

Since numerical identity is difficult to attain, and is not critical for showing that
two such models have the same dynamic behaviour, distributional equivalence is
more often than not the appropriate standard when comparing two implementations
of a stochastic social complexity model. When aiming for distributional equiva-
lence, a set of statistical summaries representative of each output are selected. It is
these summaries, and not the complete outputs, that will be compared in order to
assess the similarity between the original computational model and the replicated
one. As models may produce large amounts of data, the summary measures should
be chosen as to be relevant to the actual modelling goal. The summaries of all model
outputs constitute the set of focal measures (FMs) of a model (Wilensky and Rand
2007), or more specifically, of a model parametrisation (since different FMs may be
selected for distinct parametrisations). However, this process is empirically driven
and model-dependent, or even parameter-dependent. Furthermore, it is sometimes
unclear as to what output features best describe model behaviour. A possible
solution, presented by Arai and Watanabe (2008) in the context of comparing
models with different elements, is the automatic extraction of FMs from time-
series simulation output using the discrete Fourier transform. Fachada et al. (2017b)
proposed a similarly automated method, using principal component analysis to
convert simulation output into a set of linearly uncorrelated statistical measures,
analysable in a consistent, model-independent fashion. The proposed method was
broader in scope—with support for multiple outputs and different types of data—
and is available in the form of a software package for the R platform (Fachada et al.
2016; R Core Team 2017).

Once the FMs are extracted from simulation output, there are three major
statistical approaches used to compare them: (1) statistical hypothesis tests; (2)
confidence intervals; and (3) graphical methods (Balci and Sargent 1984). Statistical
hypothesis tests are often used for comparing two or more computational models
(Axtell et al. 1996; Wilensky and Rand 2007; Edmonds and Hales 2003; Miodownik
et al. 2010; Radax and Rengs 2009; Fachada et al. 2017a,b). More specifically,
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hypothesis tests check if the statistical summaries obtained from the outputs of two
(or more) model implementations are drawn from the same distribution. Confidence
intervals are usually preferred for comparing the output of a model with the output of
the system being modelled, as they provide an indication of the magnitude by which
the statistic of interest differs between the two. Nonetheless, confidence intervals
can also be used for model comparison, but in contexts different from replication,
such as the evaluation of different models that might represent competing system
designs or alternative operating policies (Balci and Sargent 1984; Law 2015).
Graphical methods, such as Q–Q plots (e.g. Alberts et al. 2012) or scatter plots
(e.g. Arai and Watanabe 2008; Fachada et al. 2017b), can also be employed for
comparing output data, though their interpretation is more subjective than the
previous methods.

9.5 Modelling Strategies and Its Relationship to Validation

In this section we review the purpose of validation and its relationship to different
modelling strategies with respect to the level of descriptive detail embedded in a
simulation.

Several taxonomies of modelling strategies have been described in the literature
(David et al. 2004; Boero and Squazzoni 2005; Gilbert 2008, pp. 42–44). Normally,
the adoption of these strategies does not depend on the class of the target being
modelled, but on different ways to address it as the problem domain. For example,
if a simulation is intended to model a system for the purpose of designing policies,
this implies representing more information and detail than a simulation intended
for modelling social mechanisms of the system in a metaphorical way. However,
varying levels of model detail imply a trade-off between the effort required for
verifying the simulation and the effort required for validating it. As more context
and richness are embedded in a model, the more difficult it will be to verify it.
Conversely, as one increases the descriptive richness of simulations, more ways
will be available to assess its validity. A tension that contrasts the tendency
for constraining simulations by formal-theoretical constructs—normally easier to
verify—and constraining simulations by theoretical-empirical descriptions—more
amenable to validation by empirical and participative-based methods. In the next
sections, two contrasting modelling strategies are discussed and the typical cycle of
formal and informal approaches for modelling and validation is described.

9.5.1 Subjunctive Agent-Based Models

A popular strategy in social simulation consists of using models as a means for
expressing subjunctive moods to talk about possible worlds using what-if scenarios,
like “what would happen if something were the case.” The goal is building artificial
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societies for modelling possible worlds that represent classes of social mechanisms,
while striving for maximal simplicity and strong generalisation power of the
representations used. Reasons for striving for simplicity include the computational
tractability of the model and to keep the data analysis as simple as possible.

Simplicity and generalisation power are often seen as elements of elegance
in a model. However, making the model simpler in the social sciences does
not necessarily make the model more general. More often than not this kind of
modelling only makes it metaphorically general, or simply counterfactual (with false
assumptions). For example, “What would happen if world geography is regarded
as a two-dimensional space arranged on a 10 � 10 grid, where agents are thought
of as independent political units, such as nations, which have specific behaviours
of interaction according to simple rules?” To assume that world geography is
one-dimensional, as Axelrod (1993) does in his Tribute Model, is clearly a false
assumption. Often these models are associated with a design slogan coined by
Axelrod (1997a), called the KISS approach—“Keep it Simple Stupid.” Despite their
simplicity, these kinds of models prove useful for concept formation and theoretical
abstraction. The emergence of macro regularities from micro-levels of interaction
becomes the fundamental source of concept formation and hypothesis illustration,
with the power of suggesting novel theoretical debates.

Given the tendency for simplification and abstraction, mechanisms used in these
models are normally described in a formalised or mathematical way. Axelrod’s mod-
els, such as the culture dissemination model, or Schelling’s residential segregation
model, are canonical examples. Their simplicity and elegance have been factors for
popularity and dissemination that span numerous disciplines and ease replication
and verification.

However, whereas simplicity eases verification, the use of metaphorical models
also brings disadvantages. Consider a word composed of several attributes repre-
senting an agent’s culture, such as in Axelrod’s culture dissemination model. The
attributes do not have any specific meaning and are only distinguishable by their
relative position in the word. Thus, they can be interpreted according to a relatively
arbitrary number of situations or social contexts. However, such a representation
may also be considered too simplified to mean anything relevant for such a
complex concept as a cultural attribute. As a consequence, verification is hardly
distinguishable from validation, insofar as the model does not represent a specific
context of social reality. In such a sense, the researcher is essentially verifying
experimentally whether his conceptions are met by an operationalisation that is
intentionally and computationally expressed (David et al. 2005). Nevertheless,
given their simplicity, subjunctive models can be easily linked and compared
to other models, extended with additional mechanisms, as well as modified for
model alignment, docking, or replication. Cross-element validation is a widely used
technique.

At any rate, the fact that these models are simpler to replicate and compare—but
hardly falsifiable by empirically acquired characteristics of social reality—stresses
their strong characteristic: when models based on strategies of maximal simplicity
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become accepted by a scientific community, their influence seems to reach several
other disciplines and contexts. Perhaps for this reason, these kinds of models are the
most popular in social simulation, and some models are able to reach a considerable
impact in many strains of social science.

9.5.2 Context-Specific Agent-Based Models

It would be simplistic to say that models in social simulation can be characterised
according to well-defined categories of validation strategies. Even so, the capacity
to describe social complexity, whether through simplicity or through rich detail and
context, is a determining factor for a catalogue of modelling strategies.

We cannot hope to model general social mechanisms that are valid in all
contexts. There are many models that are not designed to be markedly general
or metaphorically general, but to stress accurateness, diversity, and richness of
description. Instead of using possible worlds representing very arbitrary contexts,
models are explicitly bounded to specific contexts. Constraints imposed on these
models can vary from models investigating properties of social mechanisms in
a large band of situations which share common characteristics, to models with
the only ambition of representing a single history, like Dean’s retrodiction of the
patterns of settlement of the Anasazi in the southwestern United States, household
by household (Dean et al. 2000).

Constructing and validating a model of this kind requires the use of empirical
knowledge. They are, for this reason, often associated with the idea of “Empirical
Validation of Agent-Based Models.”

What is the meaning of empirical in this sense? If the goal is to discuss empirical
claims, then models should attempt to capture empirically enquired characteristics
of the target domain. Specifying the context of descriptions will typically provide
more ways for enquiring quantitative and qualitative data in the target, as well
as using experimental and participative methods with stakeholders. In this sense,
empirical may be understood as a stronger link between the model and a context-
specific, well-circumscribed problem domain.

The Anasazi model by Dean et al. (2000) is a well-known and oft-cited example
of a highly contextualised model built on the basis of numerous sources, from
archaeological data to anthropological, agricultural and ethnographic analyses, in
a multidisciplinary context.

Given the higher specificity of the target domain, the higher diversity of ways for
enriching the model as well as the increased semantic specificity of the outputs
produced by the model, context-specific models may be more susceptible to be
compared with empirical results of other methods of social research. On the other
hand, comparison with other simulation models is complex and these models are
more difficult to replicate and compare.
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9.5.3 Modus Operandi: Formal and Informal Approaches

The tension between simplicity and descriptive richness expresses two different
ways for approaching the construction and validation of a model. One can start
with a rich, complex, realistic description and only simplify it where this turns out
to be possible and irrelevant to the target system—known as the KIDS approach
(Edmonds and Moss 2005). Or one starts from the outset with the simplest possible
description and complexifies it only when it turns out to be necessary to make
the model more realistic (Law 2015), nevertheless keeping the model as simple as
possible—known as the KISS approach (Axelrod 1997a).

In practice, both trends are used for balancing trades-offs between the model’s
descriptive accuracy and the practicality of modelling, according to the purpose and
the context of the model (Sun et al. 2016). This raises yet another methodological
question: the extent to which models ought to be designed on the basis of formal
theories, or ought to be constrained by techniques and approaches just on the
basis of the intuition of the model builders and stakeholders. As we have seen,
strong, subjunctive, ABMs with metaphorical purposes tend to adopt the simplicity
motto with extensive use of formal constructs, making the models more elegant
from a mathematical point of view, easier to verify, but less liable to validation
methods. Game theoretical models, with all their formal and theoretical apparatus,
are a canonical example. Results from these models are strongly constrained by the
formal theoretical framework used.

A similar problem is found when ABMs make use of cognitive architectures
strongly constrained by logic-based formalisms, such as the kind of formalisms
used to specify BDI-type architectures. If the cognitive machinery of the agents
relies on heuristic approaches that have been claimed valid, many researchers in
the literature claim that cognitive ABMs can be validated in the empirical sense of
context-specific models. Cited examples of this kind usually point to ABMs based
on the Soar cognitive architecture (Laird 2012).

At any rate, context-specific models are normally more eclectic and make use
of both formal and informal knowledge, often including informal and stakeholder
evidence in order to build and validate the models. Model design tends to be less
constrained a priori by formal constructs. In principle, one starts with all aspects of
the target domain that are assumed to be relevant and then explores the behaviour
of the model in order to find out if there are aspects that do not prove relevant
for a particular interval of outcomes. The typical approach the majority of all
modelling and validation can be summarised in a cycle with the following iterative
and overlapping steps:

(a) Building and validating pre-computational and computational models: Several
descriptions and specifications are used to build a model, eventually in the
form of a computer program, which are micro-validated against a theoretical
framework and/or empirical knowledge, usually qualitatively. This may include
the individual agents’ interaction mechanisms (rules of behaviour for agents
or organisations of agents), their internal mechanisms (e.g. their cognitive
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machinery), the kind of interaction topology or environment, and the passive
entities with which the agents interact. The model used should be as general
as possible for the context in consideration as well as flexible for testing how
parameters vary in particular circumstances. Empirical data—if available—
should be used to help configure the parameters. Both the descriptions of the
model and the parameters used should be validated for the specific context of
the model. For example, suppose empirical data are available for specifying
the consumer demand of products. If the demand varies from sector to sector,
one may use data to inform the distribution upon which the parameter could be
based for each specific sector.

(b) Specifying expected behaviours of the computational model: Micro and macro
characteristics that the model is designed to reproduce are established from the
outset based on theoretical and/or empirical knowledge. Any property, from
quantitative to qualitative measures, such as emergent key facts the model
should reproduce (stylised facts), the statistical characteristic or shape of time-
data series (statistical signatures) and individual agents’ behaviour along the
simulation (individual trajectories), can be assessed. This may be carried out
in innumerable ways, according to different levels of description or grain, and
be more or less general depending on the context of the model and the kind of
empirical knowledge available. For instance, in some systems it may be enough
to predict just a “weak” or “positive” measure on some particular output, such
as a positive and weak autocorrelation. Or we might look for the emergence
of unpredictable events, such as stable regimes interleaved with periods of
strong volatility, and check their statistical properties for various levels of
granularity. Or the emergence of different structures or patterns associated with
particular kinds of agents, such as groups of political agents with “extremist” or
“moderate” individuals.

(c) Testing the computational model and building and validating post-compu-
tational models: The computational model is executed. Both individual and
aggregate characteristics are computed and tested for sensitivity analysis. These
are micro-validated and macro-validated against the expected characteristics
of the model established in step B according to a variety of validation
techniques, as described in the previous sections. A whole process of building
post-computational models takes place, possibly leading to the discovery of
unexpected characteristics in the behaviour of the computational model which
should be assessed with further theoretical or empirical knowledge about the
problem domain.

Further Reading

Good introductions to validation and verification of simulation models in general
are Sargent (2013) and Troitzsch (2004), the latter with a focus on social simulation.
Validation of ABMs in particular is addressed by Amblard et al. (2007).
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For readers more interested in single aspects of V&V, with regard to ABMs with
applicability in social simulation, the following papers provide highly accessible
starting points:

– Edmonds and Hales (2003) demonstrate the importance of model replication (or
model alignment) by means of a clear example.

– Boero and Squazzoni (2005) examine the use of empirical data for model
calibration and validation and argue that “the characteristics of the empirical
target” influence the choice of validation strategies.

– Moss and Edmonds (2005) discuss an approach for cross-validation that com-
bines the involvement of stakeholders to validate the model qualitatively on the
micro level with the application of statistical measures to numerical outputs to
validate the model quantitatively on the macro level.

– Müller et al. (2014) address the question of whether an ideal standard for
describing and documenting models exists, defining different types of model
reporting and proposing a minimum description standard for good modelling
practice.

– Lee et al. (2015) provide an overview of the state-of-the-art approaches in
analysing and reporting ABM outputs, highlighting challenges and issues related
to variance stability, sensitivity analysis, spatio-temporal analysis, visualisation,
and effective communication of these to non-technical audiences, such as various
stakeholders.

– Fachada et al. (2017b) Present a structured approach to designing and per-
forming complete model comparison experiments, using statistical tests to
determine if two or more computational models generate distributionally equiv-
alent behaviour.

– Finally, more comprehensive epistemological perspectives on verification and
validation are provided in a number of papers published or derived from the
Epistemological Perspectives on Simulation (EPOS) workshops, namely Frank
and Troitzsch (2005), David (2009), Squazzoni (2009) and David et al. (2010).
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