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Verification and validation of simulation models are discussed in this paper. Three approaches to deciding model
validity are described, two paradigms that relate verification and validation to the model development process are
presented, and various validation techniques are defined. Conceptual model validity, model verification, operational
validity, and data validity are discussed. A way to document results is given, and a recommended procedure for model
validation is presented.
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1. Introduction

Simulation models are used for a variety of purposes such as

in the design of systems, in the development of system opera-

ting policies, and in research to develop system understand-

ings. The users of these models, the decision makers using

information obtained from the results of these models, and

the individuals affected by decisions based on these models

are all rightly concerned with whether a model and its results

are ‘correct’ for its use. This concern is addressed through

model verification and validation, which is part of the model

development process. Model verification is defined as ‘ensur-

ing that the computer program of the computerized model

and its implementation are correct’. Model validation is

defined as the ‘substantiation that a model within its dom-

ain of applicability possesses a satisfactory range of accuracy

consistent with the intended application of the model’. We

discuss simulation model verification and validation in this

paper, focusing primarily on simulation models that predict

system behaviours such as system outputs. A related topic is

model credibility and this is briefly discussed. Model credi-

bility is concerned with developing in (potential) users the

confidence they require in order to use a model and in the

information derived from that model.

A model should be developed for a specific purpose

(or application) and its validity determined with respect

to that purpose. If the purpose of a model is to answer a

variety of questions, the validity of the model needs to be

determined with respect to each question. Numerous sets of

experimental conditions are usually required to define the

domain of a model’s intended applicability. A model may be

valid for one set of experimental conditions and invalid in

another. A model is considered valid for a set of experimental

conditions if the model’s accuracy is within its acceptable

range of accuracy, which is the accuracy required of the

model for its intended purpose. This usually requires that the

model’s output variables of interest (ie, the model variables

used in answering the questions that the model is being

developed to answer) be identified and then their acceptable

range of accuracy specified. A model’s acceptable range of

accuracy should be specified prior to starting the develop-

ment of the model or very early in the model development

process. If the variables of interest are random variables,

then properties and functions of the random variables such

as means and variances are usually what is of primary

interest and are what is used in determining model validity.

Several versions of a model are usually developed prior to

obtaining a satisfactory valid model. The substantiation that

a model is valid, that is, performing model verification and

validation, is generally considered to be a process and is

usually part of the (total) model development process.

It is often too costly and time-consuming to determine

that a model is absolutely valid over the complete domain

of its intended applicability. Instead, tests and evaluations

are conducted until sufficient confidence is obtained that a

model can be considered valid for its intended application

(Sargent, 1982, 1984a). If a test determines that a model does

not have sufficient accuracy for any one of the sets of experi-

mental conditions, then the model is invalid. However,

determining that a model has sufficient accuracy for nume-

rous experimental conditions does not guarantee that a

model is valid everywhere in its applicable domain. Figure 1

contains two relationship curves regarding confidence that a

model is valid (Confidence in Model) over the range of

0–100% as they would occur in most cases (Anshoff and

Hayes, 1973). The cost curve (and a similar relationship

holds for the amount of time) of performing model valida-

tion shows that cost increases at an increasing rate as the

confidence in the model increases. The value curve shows
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that the value of a model to a user increases as the confi-

dence in a model increases but at a decreasing rate. (In some

cases, these curves may have a different shape for the lower

confidence range but would usually be similar to what is

shown in Figure 1 for the upper confidence range.) The cost

of model validation is usually quite significant, especially

when extremely high model confidence is required.

The remainder of this paper is organized as follows: Section

2 presents the three decision-making approaches used in

deciding model validity, Section 3 describes two paradigms

used in verification and validation, and Section 4 defines

validation techniques. Sections 5, 6, 7, and 8 discuss data

validity, conceptual model validity, computerized model

verification, and operational validity, respectively. Section 9

describes a way of documenting results, Section 10 gives a

recommended validation procedure, and Section 11 presents

the summary.

2. Decision-making approaches

There are three basic decision-making approaches for decid-

ing whether a simulation model is valid and each approach

uses a different decision maker. All of the approaches

require the model development team to conduct verification

and validation as part of the model development process,

which is discussed in Section 3. One decision-making appro-

ach, and a frequently used one, is for the model development

team itself to make the decision as to whether a simulation

model is valid. The decision is based on the results of the

various tests and evaluations conducted as part of the model

development process. It is usually better, however, to use one

of the next two decision-making approaches, depending on

which situation applies.

A better decision-making approach is to have the user(s)

of a simulation model decide the validity of the model. In

this approach, the users of the simulation model are heavily

involved with the model development team when the team is

conducting verification and validation of the model and the

users determine whether the model is satisfactory in each

phase of verification and validation. This approach is gener-

ally used with a model development team whose size is not

large. In addition, this approach aids in model credibility.

Another decision-making approach, usually called ‘inde-

pendent verification and validation’ (IV&V), uses a third

party to decide whether the simulation model is valid.

The third party (the IV&V team) is independent of both

the simulation development team(s) and the model sponsor/

user(s). The IV&V approach is generally used with the

development of large-scale simulation models, whose devel-

opment usually involves several teams. The IV&V team

needs to have a thorough understanding of the intended

purpose(s) of the simulation model in order to conduct

IV&V. There are two common ways in which the IV&V

team conducts IV&V: (a) IV&V is conducted concurren-

tly with the development of the simulation model and

(b) IV&V is conducted after the simulation model has been

developed.

In the concurrent way of conducting IV&V, the model

development team(s) gives their model verification and

validation test results to the IV&V team as the simulation

model is being developed. The IV&V team evaluates these

results and provides feedback to the model development

team with regard to whether the model verification

and validation is satisfying the model requirements and,

when not, what the difficulties are. When conducting

IV&V in this way, the development of a simulation model

should not progress to the next stage of development

until the model has satisfied the verification and valida-

tion requirements in its current stage. It is the author’s

opinion that this is the better of the two ways to conduct

IV&V.

When IV&V is conducted after the simulation model has

been completely developed, the evaluation performed by the

IV&V team can range from simply evaluating the verifica-

tion and validation conducted by the model development

team to performing a separate thorough verification and

validation effort themselves. Wood (1986) describes experi-

ences over this range of evaluation by a third party on

energy models. One conclusion that Wood makes is that

performing a complete IV&V effort after the model has

been completely developed is both extremely costly and

time-consuming, especially for what is obtained. This

author’s view is that if IV&V is going to be conducted on

a completed simulation model then it is usually best to only

evaluate the verification and validation that has already been

performed.

The IV&V approach is also useful for model credibility.

When verification and validation is conducted by an inde-

pendent (third) party and they conclude that the simulation

model is valid, there is a much greater likelihood that others

will accept the model as valid and results from the model as

being ‘correct’. Cases where this decision-making approach

is helpful are: (i) when the problem associated with the

model has a high cost or involves a high-risk situation and

(ii) when public acceptance of results based on the model is

desired.

Figure 1 Confidence that model is valid.
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3. Paradigms

In this section, we present and discuss two paradigms that

relate verification and validation to the model development

process. There are two common ways to view this relation-

ship. One way uses a simple view and the other uses a

complex view. Banks et al (1988) reviewed work using both

of these ways and concluded that the simple way more

clearly illuminates model verification and validation. We

present one paradigm for each way developed by this author.

The paradigm of the simple way is presented first, is this

author’s preferred paradigm, and is the paradigm used for

much of the discussion in this paper.

Consider the simplified version of the model development

process in Figure 2 (Sargent, 1981). The problem entity is the

system (real or proposed), idea, situation, policy, or pheno-

mena to be modelled; the conceptual model is the mathema-

tical/logical/graphical representation (mimic) of the problem

entity developed for a particular study; and the computerized

model is the conceptual model implemented on a computer.

The conceptual model is developed through an analysis and

modelling phase, the computerized model is developed

through a computer programming and implementation phase,

and inferences about the problem entity are obtained by

conducting computer experiments on the computerized model

in the experimentation phase.

We now relate model verification and validation to this

simplified version of the model development process (see

Figure 2). Conceptual model validation is defined as deter-

mining that the theories and assumptions underlying the

conceptual model are correct and that the model representa-

tion of the problem entity is ‘reasonable’ for the intended

purpose of the model. Computerized model verification is

defined as assuring that the computer programming and

implementation of the conceptual model are correct. Opera-

tional validation is defined as determining that the model’s

output behaviour has a satisfactory range of accuracy for the

model’s intended purpose over the domain of the model’s

intended applicability. Data validity is defined as ensuring

that the data necessary for model building, model evaluation

and testing, and conducting the model experiments to solve

the problem are adequate and correct.

An iterative process is used to develop a valid simulation

model (Sargent, 1984a). A conceptual model is developed

followed by conceptual model validation. This process is

repeated until the conceptual model is satisfactory. Next the

computerized model is developed from the conceptual model

followed by computerized model verification. This process is

repeated until the computerized model is satisfactory. Next,

operational validity is conducted on the computerized model.

Model changes required by conducting operational validity

can be in either the conceptual model or in the computerized

model. Verification and validation must be performed again

when any model change is made. This process is repeated

until a valid simulation model is obtained. Several versions of

a model are usually developed before obtaining a valid

simulation model.

A detailed way of relating verification and validation to

developing simulation models and system theories is shown

in Figure 3 (Sargent, 2001b). This paradigm shows the

processes of developing system theories and simulation

models and relates verification and validation to both of

these processes. (We note that Nance and Arthur (2006) use

this paradigm as a Life-cycle Model.)

This paradigm shows a Real World and a Simulation

World. We first discuss the Real World. There exists some

system or problem entity in the real world, an understanding

of which is desired. System theories describe the character-

istics and the causal relationships of the system (or problem

entity) and possibly its behaviour (including data). System

data and results are obtained by conducting experiments

(experimenting) on the system. System theories are developed

by abstracting what has been observed from the system and

by hypothesizing from the system data and results. If a

simulation model exists of this system, then hypothesizing of

system theories can also be done from simulation data and

results. System theories are validated by performing theory

validation. Theory validation involves the comparison of

system theories against system data and results over the

domain the theory is applicable for to determine whether

there is agreement. The process of developing valid system

theories usually requires numerous experiments to be con-

ducted on the real system.

We now discuss the Simulation World, which shows a

slightly more complex model development process than the

previous paradigm shown in Figure 2. A simulation model

should only be developed for a set of well-defined objectives.

The conceptual model is the mathematical/logical/graphical
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Figure 2 Simplified version of the model development process.
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representation (mimic) of the system developed for the

objectives of a particular study. The simulation model

specification is a written detailed description of the software

design and specification for programming and implementing

the conceptual model on a particular computer system. The

simulation model is the conceptual model running on a

computer system such that experiments can be conducted

on the simulation model. The simulation model data and

results are the data and results from experiments conducted

(experimenting) on the simulation model. The conceptual

model is developed bymodelling the system for the objectives

of the simulation study using the understanding of the system

contained in the system theories. The simulation model

specification is developed by specifying in writing the soft-

ware design and the programming and implementing speci-

fications of the conceptual model for the targeted computer

system. The simulation model is obtained by implementing

the model on the specified computer system, which includes

programming the conceptual model whose specifications are

contained in the simulation model specification. Inferences

about the system are made from data obtained by conducting

computer experiments (experimenting) on the simulation

model.

Conceptual model validation is defined as determining that

the theories and assumptions underlying the conceptual

model are consistent with those in the system theories and

that the model representation of the system is ‘reasonable’

for the intended purpose of the simulation model. Specifica-

tion verification is defined as assuring that the software

design and the specification for programming and imple-

menting the conceptual model on the specified computer

system is satisfactory. Implementation verification is defined

as assuring that the simulation model has been implemented

according to the simulation model specification. Operational

validation is defined as determining that the model’s output

behaviour has a satisfactory range of accuracy for the

model’s intended purpose over the domain of the model’s

intended applicability.

This paradigm shows the relationships used in developing

valid system theories and valid simulation models. Both

of these are accomplished through iterative processes. To

develop valid system theories, which are usually for a specific

purpose, the system is first observed and then abstraction is

performed from what has been observed to develop pro-

posed system theories. These proposed theories are tested for

correctness by conducting experiments on the system to

obtain data and results to compare against the proposed

system theories. New proposed system theories may be

hypothesized from the system data and the comparisons

made, and also possibly from abstractions performed on

additional system observations. These new proposed the-

ories will require new experiments to be conducted on the
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system to obtain data to evaluate the correctness of these

proposed system theories. This process repeats itself until a

satisfactory set of validated system theories has been

obtained. Similarly, new proposed system theories can be

hypothesized from simulation data and results if a simula-

tion model exists of the system.

It is possible that proposed system theories cannot be

tested for correctness, which is done by comparing them to

system data, and therefore they cannot be validated. This

occurs if experiments cannot be performed on an existing

system or if it is too costly to do so. Proposed system theories

may also be developed for non-existing systems such as in the

design of a new system or of a modification to an existing

system. These proposed system theories are developed from

an understanding of how such a system will operate. They

cannot be validated because the system does not exist to

conduct experiments on. If propose system theories cannot

be validated, they remain as proposed system theories.

To develop a valid simulation model, an iterative process

similar to the one for the previous paradigm (given in

Figure 2) is performed. The model development team deve-

lops the conceptual model using existing validated system

theories, existing proposed system theories, new proposed

system theories they develop, or some combination of the

these three types of system theories. A simulation model

specification is developed for the conceptual model that is

used to implement a simulation model on the computer.

Experiments are performed on the simulation model to

generate data for use in operational validation. Several

versions of a model are usually developed prior to obtaining

a valid simulation model.

4. Validation techniques

This section describes validation techniques and tests

commonly used in model verification and validation. Most

of the techniques described here are found in the literature,

although some may be described slightly differently. They

can be used either subjectively or objectively. By ‘objec-

tively’, we mean using some type of mathematical procedure

or statistical test, for example hypothesis tests or confidence

intervals. A combination of techniques is generally used.

These techniques are used for verifying and validating the

submodels and the overall model.

Animation: The model’s operational behaviour is displayed

graphically as the model moves through time. For example,

the movements of parts through a factory during a simula-

tion run are shown graphically. (Usually, only a relatively

short time interval can be observed, which may result in not

all behaviours being observed.)

Comparison to other models: Various results (eg, outputs)

of the simulation model being validated are compared to

results of other (valid) models. For example (1) simple cases

of a simulation model are compared to known results of

analytic models, and (2) the simulation model is compared

to other validated simulation models.

Data relationship correctness: Data relationship correctness

requires data to have the proper values regarding rela-

tionships that occur within a type of data, and between and

among different types of data. For example, are the values of

data collected on a system or model correct for some known

relationship within some type of data such as an inventory

balance relationship or a dollar relationship?

Degenerate tests: The degeneracy of the model’s behaviour is

tested by appropriate selection of values of the input and

internal parameters. For example, does the average number

in the queue of a single server continue to increase over time

when the arrival rate is larger than the service rate?

Event validity: The ‘events’ of occurrences of the simula-

tion model are compared to those of the real system to deter-

mine whether they are similar. For example, compare the

number of fires in a fire department simulation to the actual

number of fires.

Extreme condition test: The model structure and outputs

should be plausible for any extreme and unlikely combina-

tion of levels of factors in the system. For example, if

in-process inventories are zero, production output should

usually be zero.

Face validity: Individuals knowledgeable about the system

are asked whether the model and/or its behaviour are

reasonable. For example, is the logic in the conceptual model

correct and are the model’s input–output relationships

reasonable?

Historical data validation: If historical data exist (eg, data

collected on a system specifically for building and testing a

model), part of the data is used to build the model and the

remaining data are used to determine (test) whether the

model behaves as the system does.

Internal validity: Several replications (runs) of a stochastic

model are made to determine the amount of (internal)

stochastic variability in the model. A large amount of varia-

bility among the replications may cause the model’s results

to be questionable, and if typical of the problem entity may

question the appropriateness of the policy or system being

studied.

Multistage validation: Naylor and Finger (1967) proposed

combining the philosophy of science methods of rationalism,

empiricism, and positive economics into a multistage process

of validation. This validation method consists of (1) develop-

ing the model on theory, observations, and general knowledge;

16 Journal of Simulation Vol. 7, No. 1



(2) validating the model’s assumptions where possible by

empirically testing them; and (3) comparing (testing) the

input–output relationships of the model to the real system.

Operational graphics: Values of various performance mea-

sures, for example the number in queue and percentage

of servers busy, are shown graphically as the model runs

through time; that is, the dynamical behaviours of perfor-

mance indicators are visually displayed as the simulation

model runs through time to ensure that the performance

measures and the model are behaving correctly.

Parameter variability–sensitivity analysis: This technique

consists of changing the values of the input and internal

parameters of a model to determine the effect upon the

model’s behaviour or output. The same relationships should

occur in the model as in the real system. This technique

can be used qualitatively—directions only of outputs—and

quantitatively—both directions and (precise) magnitudes of

outputs. Those parameters that are sensitive, that is, cause

significant changes in the model’s behaviour or output,

should be made sufficiently accurate prior to using the

model. (This may require iterations in model development.)

Philosophy of science methods: The three philosophy of

science methods are rationalism, empiricism, and positive

economics. Rationalism requires a model to be logically

developed (correctly) from a set of clearly stated assump-

tions. Empiricism requires every model assumption and

outcome to be empirically validated. Positive economics

requires only that the model outcomes are correct and is not

concerned with a model’s assumptions or structure (causal

relationships or mechanisms).

Predictive validation: The model is used to predict (forecast)

the system’s behaviour, and then comparisons are made

between the system’s behaviour and the model’s forecast to

determine whether they are the same. The system data may

come from an operational system or be obtained by con-

ducting experiments on the system, for example field tests.

Structured walkthrough: The entity under review is formally

presented usually by the developer to a peer group to deter-

mine the entity’s correctness. An example is a formal review

of computer code by the code developer explaining the code

line by line to a set of peers to determine the code’s correctness.

Trace: The behaviour of a specific type of entity in a model is

traced (followed) through the model to determine whether

the model’s logic is correct and if the necessary accuracy is

obtained. (Most current simulation software provide for

trace capability making the use of traces relatively simple.)

Turing test: Individuals who are knowledgeable about the

operations of the system being modelled are asked whether

they can discriminate between system and model outputs.

(Schruben (1980) contains statistical tests for the Turing test.)

5. Data validity

We discuss data validity, even though it is often not con-

sidered to be part of model validation, because it is usually

difficult, time-consuming, and costly to obtain appropriate,

accurate, and sufficient data, and data problems are often the

reason that attempts to validate a model fail. Data are prima-

rily used for three purposes: for building the conceptual

model, for validating the model, and for performing experi-

ments with the validated model. In model validation, we are

usually concerned only with data for the first two purposes.

Data needed on the problem entity for building the con-

ceptual model include data for identifying and developing

appropriate system theories, developing mathematical and

logical relationships, estimating model parameter values,

and developing and testing the model assumptions. Beha-

vioural data are needed on the problem entity to be used in

the operational validity step of comparing the problem

entity’s behaviour with the model’s behaviour. (Usually,

these data are system input/output data.) If problem entity

behaviour data are not available, high model confidence

usually cannot be obtained because sufficient operational

validity cannot be achieved.

The concerns with data are that appropriate, accurate,

and sufficient data are available, and all data transforma-

tions, such as data disaggregation, are made correctly. Unfor-

tunately, there is not much that can be done to determine

whether the data are correct. One should develop and use

good procedures for (1) collecting and maintaining data, (2)

testing the collected data using techniques such as data

relationship correctness on known data relationships, and (3)

screening the data for outliers and determining if the outliers

are correct. (Note: Outliers should always be evaluated and, if

correct, the reason for them occurring should be incorporated

into the simulation model.) If the amount of data is large, a

database of the data should be developed and maintained.

6. Conceptual model validation

Conceptual model validity determines that (1) the theories

and assumptions underlying the conceptual model are cor-

rect and (2) the model’s representation of the problem entity

and the model’s structure, logic, and mathematical and

causal relationships are ‘reasonable’ for the intended pur-

pose of the model. The theories and assumptions underlying

the model should be tested using mathematical analysis and

statistical methods on problem entity data. Examples of

theories and assumptions are linearity, independence of data,

and arrivals to the system follow a Poisson process. Examples

of applicable statistical methods are fitting distributions to

data, estimating parameter values from the data, and plotting

RG Sargent—Verification and validation of simulation models 17



data to determine whether the data are stationary. In

addition, all theories used should be reviewed to ensure they

were applied correctly. For example, if a Markov chain is

used, does the system have the Markov property, and are the

states and transition probabilities correct?

A conceptual model may be a single model or an overall

model with submodels. Each model, whether a single model,

an overall model, or a submodel, must be evaluated to deter-

mine whether it is reasonable and correct for the intended

purpose of the conceptual model. This should include deter-

mining whether the appropriate detail and aggregate relation-

ships have been used for the model’s intended purpose, and

also whether appropriate structure, logic, and mathematical

and causal relationships have been used. The primary valida-

tion techniques used for these evaluations are face validation,

structured walkthroughs, and traces. Face validation has

experts on the problem entity evaluate the conceptual model,

which may be a flowchart model, graphical model (Sargent,

1986), or a set of model equations, to determine whether

it is correct and reasonable for its purpose. Structured

walkthrough is having the conceptual model developer

formally explain the model in detail to a set of peers for

them to determine the conceptual model correctness. The use

of traces is the tracking of entities through each submodel and

the overall model to determine whether the logic is correct

and whether the necessary accuracy is maintained. If errors

are found in the conceptual model, it must be revised and

conceptual model validation performed again.

7. Computerized model verification

Computerized model verification ensures that the computer

programming and implementation of the conceptual model

are correct. The major factor affecting verification is whether

a simulation language or a higher-level programming langu-

age such as FORTRAN, C, or C++is used. The use of a

special-purpose simulation language generally will result in

having fewer errors than if a general-purpose simulation

language is used, and using a general-purpose simulation

language will generally result in having fewer errors than if a

general purpose higher-level programming language is used.

(The use of a simulation language also usually increases the

model execution times and reduces both the programming

time required and the amount of flexibility.)

When a simulation language is used, verification is pri-

marily concerned with ensuring that an error-free simulation

language has been used, that the simulation language has

been properly implemented on the computer, that a tested

(for correctness) pseudo random number generator has been

properly implemented, and that the model has been pro-

grammed correctly in the simulation language. The primary

techniques used to determine that the model has been pro-

grammed correctly are structured walkthroughs and traces.

If a higher-level programming language has been used,

then the computer program should have been designed, deve-

loped, and implemented using techniques found in software

engineering. (These include such techniques as object-oriented

design, structured programming, and programmodularity.) In

this case, verification is primarily concerned with determining

that the simulation functions (eg, the time-flow mechanism,

pseudo random number generator, and random variate

generators) and the computerized (simulation) model have

been programmed and implemented correctly.

There are two basic approaches for testing simulation

software: static testing and dynamic testing (Fairley, 1976).

In static testing, the computer program is analysed to deter-

mine whether it is correct by using such techniques as struc-

tured walkthroughs, correctness proofs, and examining the

structure properties of the program. In dynamic testing, the

computer program is executed under different conditions

and the values obtained (including those generated during

the execution) are used to determine whether the computer

program and its implementations are correct. The techniques

commonly used in dynamic testing are traces, investigations

of input–output relationships using different validation tech-

niques, data relationship correctness, and reprogramming

critical components to determine whether the same results

are obtained. If there are a large number of variables, one

might aggregate the numerical values of some of the vari-

ables to reduce the number of tests needed or use certain

types of design of experiments (Kleijnen, 2008).

It is necessary to be aware while checking the correctness

of the computer program and its implementation that errors

found may be caused by the data, the conceptual model, the

computer program, or the computer implementation. (See

Whitner and Balci (1989) for a detailed discussion on simula-

tion model verification.)

8. Operational validity

Operational validation is determining whether the simula-

tion model’s output behaviour has the accuracy required for

the model’s intended purpose over the domain of the model’s

intended applicability. This is where much of the validation

testing and evaluation take place. Since the simulation model

is used in operational validation, any deficiencies found may

be caused by what was developed in any of the earlier steps in

developing the simulation model including developing the

system’s theories or having invalid data.

All of the validation techniques discussed in Section 4

are applicable to operational validity. Which techniques

and whether to use them objectively or subjectively must be

decided by the model development team and the other

interested parties. The major attribute affecting operational

validity is whether the problem entity (or system) is observ-

able, where observable means it is possible to collect data on

the operational behaviour of the problem entity. Table 1
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gives a classification of the validation techniques used in

operational validity based on the decision approach and

system observable. ‘Comparison’ means comparing the

simulation model output behaviour to either the system

output behaviour or another model output behaviour using

graphical displays or statistical tests and procedures.

‘Explore model behaviour’ means to examine the output

behaviour of the simulation model using appropriate valida-

tion techniques, including parameter variability–sensitivity

analysis. Various sets of experimental conditions from the

domain of the model’s intended applicability should be used

for both comparison and exploring model behaviour.

To obtain a high degree of confidence in a simulation

model and its results, comparisons of the model’s and

system’s output behaviours for several different sets of

experimental conditions are usually required. Thus, if a

system is not observable, which is often the case, it is usually

not possible to obtain an extremely high degree of con-

fidence in a model of it. In this situation, the model output

behaviour(s) should be explored as thoroughly as possible

and comparisons made to other valid models whenever

possible.

We note that there are two methods to provide simulation

model inputs. One method is sampling from either empirical

or theoretical input distributions and the other method is the

use of system data traces, which is often referred to as trace-

driven simulation (Law, 2007). In the latter method, data

traces are collected on the system inputs and then these

traces are used to ‘drive’ the simulation model instead of

sampling from the input distributions. (Some specialized

methods for validation of trace-driven simulation have been

developed; see, eg, Kleijnen et al (2001) and Sargent (2010).)

8.1. Explore model behaviour

The simulation model output behaviour can be explored

either qualitatively or quantitatively. In qualitative analysis,

the directions of the output behaviours are examined

and also possibly whether the magnitudes are ‘reasonable’.

In quantitative analysis, both the directions and the precise

magnitudes of the output behaviours are examined. Experts

on a system, often called subject matter experts, usually

know the directions and often know the ‘general values’ of

the magnitudes of the output behaviours. Many of the

validation techniques given in Section 4 can be used for

model exploration. Parameter variability–sensitivity analysis

should usually be used. Graphs of the output data discussed

in the subsection ‘Graphical comparisons of data’ below can

be used to display the simulation model output behaviour.

A variety of statistical approaches can be used in performing

model exploration including metamodelling and design

of experiments. (See Kleijnen (1999) for further discussion

on the use of statistical approaches.) Numerous sets of

experimental frames should be used in performing model

exploration.

For non-observable systems, exploring the output beha-

viour of the models is the method primarily used to

determine model validity. Experts on the system can make

subjective decisions on whether the model outputs are

reasonable. If other models exist of the system, the outputs

of these models can be compared either subjectively or

objectively to the outputs of the model being evaluated for

validity. On the basis of all of the evaluations, a decision is

made regarding the validity of the simulation model.

8.2. Comparisons of output behaviours

There are three basic approaches used in comparing the

simulation model output behaviour to either the system

output behaviour or another model output behaviour:

(1) the use of hypothesis tests to make an objective decision,

(2) the use of confidence intervals to make an objective

decision, and (3) the use of graphs to make a subjective

decision. It is preferable to use hypothesis tests or confidence

intervals for the comparisons because these provide objective

decisions. Unfortunately, it is often not possible in practice

to use either one of these two approaches because (a) the

statistical assumptions required cannot be satisfied or only

with great difficulty (assumptions usually required are data

independence and normality) and/or (b) there is an insufficient

quantity of system data available, which causes the statistical

results to be ‘meaningless’ (eg, the length of a confidence

interval developed in the comparison of the system and

simulation model means is too large for any practical useful-

ness). As a result, the use of graphs is the most commonly

used approach for operational validity. Each of these three

approaches is discussed below when using system data. These

approaches are used in the same way when using data from

Table 1 Operational validity classification

Decision approach Observable system Non-observable system

Subjective approach K Comparison using graphical displays

K Explore model behaviour

K Explore model behaviour

K Comparison to other models

Objective approach K Comparison using statistical tests
and procedures

K Comparison to other models
using statistical tests
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another model instead of system data. (We note that there are

advanced statistical methods that can be used for comparisons

of output data such as the use of distribution-free statistical

tests. These methods can also have difficulties in their use for

validating simulation models such as requiring a large amount

of system data to obtain useful results.)

Hypothesis tests. Hypothesis tests can be used in the

comparison of means, variances, distributions, and time

series of the output variables of a model and a system for

each set of experimental conditions to determine whether

the simulation model’s output behaviour has a satisfactory

range of accuracy for its intended application. The accuracy

required of a model is usually specified as a range for the

difference between the model variable and the corresponding

system variable of interest (eg, the difference between the

means of a model variable and the corresponding system

variable).

The first step in hypothesis testing is to state the

hypotheses to be tested:

H0: Model is valid for the acceptable range of accuracy under

the set of experimental conditions.

H1: Model is invalid for the acceptable range of accuracy

under the set of experimental conditions.

Two types of errors are possible in testing hypotheses. The

first, or type I error, is rejecting the validity of a valid model

and the second, or type II error, is accepting the validity of

an invalid model. The probability of a type-I error, a, is
called model builder’s risk, and the probability of a type-II

error, b, is called model user’s risk (Balci and Sargent, 1981).

In model validation, the model user’s risk is extremely

important and must be kept small. Thus, both type-I and

type-II errors must be carefully considered when using

hypothesis testing for model validation.Statistical hypothesis

tests usually test for a single point. Since the acceptable

range of accuracy for each model variable of interest is

usually specified as a range, a hypothesis test that uses a

range is desired. Recently, a new statistical procedure has

been developed for comparisons of model and system

outputs using hypothesis tests when the acceptable range

of accuracy is specified as a range (Sargent, 2010). This new

statistical procedure is applied at each experimental condi-

tion to determine whether the model is valid for that

experimental condition. Both type-I and type-II errors are

considered through the use of the operating characteristic

curve (Hines et al, 2003; Johnson et al, 2010). Furthermore,

the model builder’s and the model user’s risk curves can

be developed using this new procedure. This procedure

provides for (i) a trade-off to be made between the two risks

for fixed sample sizes and (ii) trade-offs among the two risks

and different sample sizes for variable sample sizes. See

Sargent (2010) for details of performing this new procedure.

Confidence intervals. Confidence intervals (c.i.) and

simultaneous confidence intervals (s.c.i.) can be obtained

for the differences between means, variances, and distribu-

tions of different simulation models and system output

variables for each set of experimental conditions. These c.i.

and s.c.i. can be used as the model range of accuracy for

model validation, where the model range of accuracy is the

conference interval or region (for the s.c.i.) around the

estimated difference between some function (eg, the mean)

of the model and system output variable being evaluated.

To construct the model range of accuracy, a statistical

procedure containing a statistical technique and a method

of data collection must be developed for each set of experi-

mental conditions and for each variable of interest. The

statistical techniques used can be divided into two groups:

(1) univariate statistical techniques and (2) multivariate

statistical techniques. The univariate techniques can be used

to develop c.i., and with the use of the Bonferroni inequality

(Law, 2007) s.c.i. The multivariate statistical techniques can

be used to develop s.c.i. Both parametric and non-parametric

techniques can be used.

The method of data collection must satisfy the underlying

assumptions of the statistical technique being used. The

standard statistical techniques and data collection methods

used in simulation output analysis (Law, 2007; Banks et al,

2010) can be used in developing the model range of accuracy,

for example the methods of replication and (non-over-

lapping) batch means.

It is usually desirable to construct the model range of

accuracy with the lengths of the c.i. and s.c.i. as short as pos-

sible. The shorter the lengths, the more useful and meaningful

the model range of accuracy will usually be. The c.i. and s.c.i.

lengths (1) are affected by the values of confidence levels,

variances of the model and system output variables, and

sample sizes, and (2) can be made shorter by decreasing the

confidence levels or increasing the sample sizes. A trade-off

needs to be made among the sample sizes, confidence levels,

and estimates of the length of the model range of accuracy.

Trade-off curves can be constructed to aid in the trade-off

analysis.

Details on the use of c.i. and s.c.i. for operational validity,

including a general methodology, are contained in Balci and

Sargent (1984b).

Graphical comparisons of data. Data of the simulation

model and system output variables are graphed for various

sets of experimental conditions to determine whether the

model’s output behaviour has sufficient accuracy for the

model’s intended purpose. Three types of graphs are used:

histograms, box (and whisker) plots, and behaviour graphs

(see Figures 4, 5, and 6 for an example of each one).

(Behaviour graphs use scatter plots to show relationships

between two measures. Additional behaviour graphs with

explanations are contained in Sargent, 1996a.) A variety

of graphs can be developed that use different types of (1)
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measures such as the mean, variance, maximum, minimum,

distribution, and times series of the variables, and (2)

relationships between (a) two measures of a single variable

(see, eg, Figure 6) and (b) measures of two variables. It is

important that appropriate measures and relationships be

selected with respect to the model’s intended purpose to be

used in developing graphs to validate a simulation model.

(See Anderson and Sargent (1974) and Lowery (1996) for

examples of sets of graphs used in the validation of two

different simulation models.)

The simulation model data in these graphs are used as

reference distributions (instead of theoretical distributions

such a t or F distribution) to compare the system data against

to determine if the model measure (eg the mean of an output)

being evaluated has a satisfactory range of accuracy. We see

in Figure 4 that the system data point lies within the model

data, in Figure 5 that the model data has a slightly smaller

median and more variability than the system data, and in

Figure 6 we see that the relationship between the mean and

standard deviation of reaction time for both the model and

system is linear with the same slope. A subjective decision is

made for each graph if the model accuracy is within the

acceptable range of accuracy. We note that the same errors

can be made when making these subjective decisions as in the

hypothesis tests discussed in the subsection ‘Hypothesis tests’.

The only requirement on the data in these graphs is that

they must be ‘identically distributed’; the data can have any

statistical distribution and be correlated. Sufficient simulation

model data must be generated to be used as a reference distri-

bution. The minimum number of data points needed depends

on the amount of variability and correlation between data

points—the larger each is the more model data that is

required. (See Sargent (1996a, 2001a, b) for further discussion.)

These graphs can be used in model validation in different

ways. First, the model development team (and also the users

if they are deciding the validity of a simulation model) can

use the graphs in the model development process to make a

subjective judgement on whether a simulation model posses-

ses sufficient accuracy for its intended purpose. Second, they

can be used in the face validity technique where experts

are asked to make subjective judgements on whether a

simulation model possesses sufficient accuracy for its intended

purpose. Third, the graphs can be used in Turing tests.

Fourth, the graphs can be used in different ways in IV&V.

9. Documentation

Documentation on model verification and validation is

usually critical in convincing users of the ‘correctness’ of a

model and its results, and should be included in the simula-

tion model documentation. (See Gass (1984) for a general

discussion on documentation of computer-based models.)

Both detailed and summary documentation are desired. The

detailed documentation should include specifics on the

tests, evaluations made, data, results, etc. The summary
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Figure 4 Histogram of hospital data.

Figure 5 Box plot of hospital data.

Figure 6 Behaviour graph of computer reaction time.
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documentation should contain a separate evaluation table

for data validity, conceptual model validity, computer model

verification, operational validity, and an overall summary

(see Figure 7 for an example of an evaluation table of

conceptual model validity). (Examples of other evaluation

tables are contained in Sargent, 1991, 1996b.) The entries of

Figure 7 are self-explanatory except for the last column,

which refers to the confidence the evaluators have in the

results or conclusions. These are often expressed as low,

medium, or high. (Data for this documentation are collected

during the development of the simulation model.)

10. Recommended procedure

The author recommends that the following eight steps be

performed in model verification and validation:

1. An agreement be made prior to developing the model

between (a) the model development team and (b) the

model sponsors and (if possible) the users that specifies

the decision-making approach and a minimum set of

specific validation techniques to be used in determining

model validity.

2. Specify the acceptable range of accuracy required of the

simulation model’s output variables of interest for the

model’s intended application prior to starting the devel-

opment of the model or very early in the model develop-

ment process.

3. Test, wherever possible, the assumptions and theories

underlying the simulation model.

4. In every model iteration, perform at least face validity on

the conceptual model.

5. In every model iteration, at least explore the simulation

model’s behaviour using the computerized model.

6. In at least the last model iteration, make comparisons,

if possible, between the simulation model and system

behaviour (output) data for at least a few sets of

experimental conditions, and preferably for several sets.

7. Prepare the verification and validation documentation for

inclusion in the simulation model documentation.

8. If the simulation model is to be used over a period of time,

develop a schedule for periodic review of the model’s validity.

Some simulation models are developed for repeated use. A

procedure for reviewing the validity of these models over

their life cycles needs to be developed, as specified in Step 8.

No general procedure can be given because each situation is

different. For example, if no data were available on the

system when a simulation model was initially developed and

validated, then revalidation of the model should take place

prior to each usage of the model if new data or system

understanding has occurred since the last validation.

11. Summary

Model verification and validation are critical in the develop-

ment of a simulation model. Unfortunately, there is no set of

specific tests that can easily be applied to determine the

‘correctness’ of a model. Furthermore, no algorithm exists to

determine what techniques or procedures to use. Every

simulation project presents a new and unique challenge to

the model development team. The verification and validation

information presented in this paper should help with this

challenge.

In this paper, we discussed ‘practical approaches’ to

verification and validation of simulation models. For a

discussion on the philosophy of model validation, see

Kleindorfer and Ganeshan (1993).

There is considerable literature on model verification and

validation (see, eg, Balci and Sargent, 1984a). Beyond the

references already cited above, there are conference tutorials

and papers (eg, Sargent, 1979, 1984b, 1990, 2000, 2005),

Category / Item Technique(s) Used Justification for 
Technique Used

Reference to 
Supporting Report

Result / 
Conclusion

Confidence 
in Result

Theories•
•
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•
•
•

•

•

Assumptions
Model 
representation

Face validity
Historical 
Accepted 
approach
Derived from 
empirical data
Theoretical 
derivation

Strengths

Weaknesses

Overall Evaluation for
Conceptual Model Validity

Overall
Conclusion

Justification for
Conclusion

Confidence in
Conclusion

Figure 7 Evaluation table for conceptual model validity.
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journal articles (eg, Gass, 1983; Landry et al, 1983), discussions

in textbooks (eg, Zeigler, 1976; Zeigler et al, 2000;

Robinson, 2004; Law, 2007; Banks et al, 2010), USA

Government Reports (eg, U.S. General Accounting Office,

1987; DoDI 5000.61, 2009), and a book by Knepell and

Arangno (1993) that can be used to further your knowledge

on model verification and validation.

Research continues on these topics. This includes such

items as advisory systems (eg, Rao and Sargent, 1988; Balci,

2001), scoring models (eg, Gass and Joel, 1987; Balci, 1989;

Gass, 1993), cost of validation (eg, Szabo and Teo, 2012)

and new approaches, procedures, and techniques (eg, Balci

et al, 2002; Ruess and de Moura, 2003; Sargent, 2010). We

note that advisory systems have not come into use and that

scoring models are rarely used as there are issues with them

(Sargent, 2005). See Sargent et al (2000) for a discussion on

research directions.
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