Riot Modelling

Jelte Mense

Definitions

Violence

Generic Riot Timeline

London Data

Time (Day in August)

Individual Boroughs

London geography

Three models

1. Protests \rightarrow Riot time and intensity

2. Social networks \rightarrow Riot spread

3. Effect of demographic structures and segregation

Every tick

- Only model potential rioters
- Agents can join
- Agents can leave
- Police responds

Join variables

Agent affinity

Join equations

$$P(X = \text{communicate}) = \alpha \cdot e^{-\omega T_M},$$

$$E = rac{e^{eta \cdot C_R - \gamma}}{1 + e^{eta \cdot C_R - \gamma}},$$

$$R = \frac{N_R}{N_R + \delta \cdot N_P}.$$

$$P(X = \text{join}) = R \cdot \frac{I+E}{2} \cdot e^{-\omega T_M}.$$

Leave variables

Leave equations

$$P(X = \text{leave}) = (1-R)(1-e^{-\varepsilon \cdot T_R}),$$

$$R = \frac{N_R}{N_R + \delta \cdot N_P}.$$

• Cooldown prevents rejoining

Calibration results

Research setup

Hardship Dimension 1 Hardship Dimension 2

Hardship allocation

Small world network + variation

Constant N Edges

Riot Duration (days)

Riot spread in 3 clusters

Hardship Dimension 1 Hardship Dimension 2

а

Rewire Outside