
NetLogo

• Easy to use
• Programming language directed to interface
• “agents” are called “turtles” in

documentation
• If you want to use complex (BDI) agents

use Repast (Java based)

NetLogo – Interface Panel

Command
Buttons

Parameter
Slider

Typed Direct Commands

Speed
Control

Text Output

Panel
Selection

(looks
slightly

different on
Windows

and Macs)

Typing in Commands
Press “setup” to
initialise world

World with different
colour patches

An agent!

Type commands in here
as follows…

Inspecting Patches and Agents
Right-click (or
ctrl click) on a

patch, then
“inspect” that

patch

Magnified
View

Properties of patch

Type commands to patch here, e.g. set pcolor red

Click on little “x” in
corner to get rid of

inspector

Right-click (or
ctrl click) on a

agent, then
“inspect” that

agent
Try typing commands to agent, e.g.:
• show who
• fd 1
• fd 2
• rt 90
• lt 90
• fd 1 rt 90 fd 1
• set color violet
• set size 4

Some important ideas
• The whole world, the turtles, the patches (and

later the links) are “agents”
• That is, they:

– have their own properties
– can be given commands
– can detect things about the world around them,

other agents etc.
• But these are all ultimately controlled from the

world (from the view of the observer)
• It is the world that is given the list of

instructions as to the simulation, which then
sends commands to patches, agents (and
links) using the “ask” command

Using “ask”

Try typing commands to agents
via the world, e.g.:
• ask inds [fd 1]
• ask inds [set color grey]
• ask inds [set shape “person”]
• ask inds [fd 1 rt 90 fd 1]
• ask inds [show patch-here]
• etc.
Can also ask patches:
• ask patches [show self]
• ask patches [set pcolor black]
• ask patch 0 0 [show agents-

here]

Running a simulation (the hard way!)

• Each time “step” is pressed
the procedure called “go” is
caused to run – this is a list
of commands, a program.

• We will now look at this.

2. Press “setup”
to initialise world

1. Move the slider to
change parameter

3. Press “step” to make
the program run one time

step

4. Press “step” lots of times!!

The Program Code

This text is the program

Click on the “Code” tab
to see the program

This chunk of code (from “to”
to “end”) is the “setup”

procedure – what happens
when you press the setup

button

Text after a
semi-colon “;” are

comments and have no
effect Scroll down to look at the “go” procedure

– this is what the “step” button does

Parts of the Code

Everything between “to” and
“end” defines what “go” means

“ask inds” means to ask
(all) agents to do some

code, one after the other

What it is asking them all to
do is between the square

brackets “[….]”
All the square brackets inside

each other can be confusing, if
you double-click just outside a
bracket, it shows what is in side

between it and the matching
bracket

To change the program…

type the following:
;; my bit!
if random-float 1 < 0.05 [lt 90]

Click within the text
and type!

You can press “Check” to see if
you got the syntax of everything

right!

If all is well you can then
click on “Interface” to go
back and try the effect of

your change when running
the code (pressing the

“step” button)

The Information Tab
Click on the “Info” tab
to see a description of
the model (or whatever

the programmer has
written, if anything!)

Read it, scrolling down

Here are some suggestions
of bits of code to add and

things to try (in a bit!)

Adding a button and running the code
(the fast way!)
Click on the “Interface”
tab to get back to the

main view

Right-Click some empty
space and choose “button”

Type the text “go” here and
then check (to on) the

“forever” switch then “OK”

Now when you press the “go”
button it will keep doing doing

the “go” procedure forever
(until you “unpress” it)

Adding a button and running the code
for only 10 steps

Right-Click some different
empty space and choose

“button”

Type the text “repeat 10 [go]”
here

Type the text “10 steps” here
and then “OK”Now when you press the “10

steps” button it will do the
“go” procedure only 10 times

Types of Agent
• To make the programming clearer you can define

different types of agent for different roles and
purposes

• The built in general type “turtles” refers to all these
kinds of agents

• (patches and links are of a different and fixed type)
• This is done in the declaration section at the top of

the program code, e.g.
breed [people person]

• Once declared many commands use the breed
name as part of the command, e.g.

create-people 1 [… some commands …]
• As well as being referred to directly, e.g.

ask people [… some commands …]

Reacting to other agents

• Reacting to and with other agents is at the
core of most social ABMs

• Even simple mutual reaction can result in
quite complex outcomes

• In simulations where it is hard to
understand how the resultant patterns of
the whole (the macro-level) come out of the
behaviours of the agents (the micro-level)
this is called “emergence”

Fixed vs. Reactive vs. Adaptive vs.
Reflective Agents vs. …
How agents control behaviour is a matter of simulator
choice, e.g…
• Behaviour might be fixed – an engrained habit,

procedure, or built-in reflex
• It might be reactive – a certain response is

‘triggered’ under certain circumstances
• The agent might have internal memory/states that

are changed by interaction and upon which future
behaviour depends – this is adaptive behaviour

• The agent might do something more complicated…
weighing up future alternatives, solving a puzzle,
reasoning about possibilities etc. – these reflective
actions are quite complex to program

The “voter” simulation

• This is a very simple simulation where votes
and parties are spread over a political
spectrum – voters vote for the party nearest
in position to them, parties shift position if
they do not win

“AgentSets” in NetLogo
One powerful facility in NetLogo is the ability to deal with sets of agents.
Examples include:
• turtles – all agents
• parties – all agents of the breed “party”
• parties with [not won?] – the set of parties with the won? property set

to false
• [color] of chosen-party – extracts the value(s) from a set of agents
• one-of voters – a random one from all in voters
• max-one-of parties [votes] – the agent in parties with the most of

property: votes
• min-one-of parties [abs (political-position - [political-position] of

myself)] – the agent in parties with the minimum value of abs (political-
position - [political-position] of myself) in other words, the closest to its
own political position

The category called “Agentset” in the NetLogo dictionary shows some of
the primitives that can be used with these

The importance of visualisations
• Due to the fact that it is (relatively) easy to create a

simulation you do not understand and that…
• …You can not rely on your intuitions and classic

outputs such as aggregate measures/graphs
• Making good visualisations of what is happening is

very important
• I often spend as much time on getting the

visualisations of a model right as I do the original
“core” programming

• And this can allow a “step change” in my
understanding

• The NetLogo “world view” is ideal for this

Discussion – Interpreting an ABM

• Simulations (indeed any model) is
meaningless without some interpretation of
what things are meant to stand for to guide
model development and investigation

• How do you interpret your observations of
the model with 100 voters and 3 parties?

• The questions:
– How meaningful is the simulation?
– How empirically realistic is the simulation?

• Are not quite the same!

A change to the simulation setup

• In the setup procedure, where voters are
created, change the command set political-
position random-float 1 to: set political-
position random-normal 0.5 0.15

• This changes the initial distribution of voters
from a uniform one to a normal distribution

• Go back and re-investigate the behaviour of
the simulation with this setup

• How much does it change the results? Just
a bit? Qualitatively different?

Randomness!
• It is very tempting when some process is either complex

or unknown to chuck in a random choice
• But this is as much a definite choice with consequences

as any other and should be used with caution!
• It is OK when…

– this is just a temporary ‘stub’ which will be replaced later (but
then this needs to be declared if it is left in)

– One just needs a variety of behaviours for
exploratory/testing purposes (but then if you are publishing
the results you have a different purpose)

– One knows the behaviour IS random (check the evidence
that this is so)

– One is pretty sure that the behaviour is irrelevant to the
outcome one is looking at (run the model with different kinds
of behaviour and check it makes no difference)

• But otherwise it might be better to replace it with
something more definite or more realistic

Interaction Structures

There are a number of possible ways of
structuring agent interactions, including:
• Randomly – others are chosen from

population at random
• Via space – those within a certain distance

or in nearby/the same space
• Via a social network of links
• Only indirectly via the environment
All of these are relatively simple in NetLogo

Making & using a network in NetLogo
ask turtles [
create-links-with n-of number-links-each other turtles
]

• For each node: make links with the set number of
others, but not oneself (hence the “other”)

• n-of returns that number of the set provided it (at
random)

• Later any node can be asked to do something with
all its “link-neighbours” – a set of all those it is
connected with, e.g.:

if any? link-neighbors with [color = red] [
…do something or other…
]

Adding a choice of network I
• Right-click (or ctrl-click) on some empty space and choose “Chooser”
• In the dialogue that appears, enter

network-type for “Global Variable” and…
"random"
"nearest”

• …in the “Choices” box, then press “OK”
• In the setup procedure change:

ask turtles [
create-links-with n-of number-links-each other turtles

]
• to:

if network-type = "random" [
ask turtles [
create-links-with n-of number-links-each other turtles

]
]

• Now this method is only used to make the network if “random” is
chosen in the Chooser dialogue

Adding a choice of network II
• Add the following into the setup procedure

(immediately above or below the last bit of code we
messed with):
if network-type = "nearest" [

ask turtles [
create-links-with min-n-of number-links-each other turtles

[distance myself]
]

]
• If the nearest choice is made, for each node this

links to the set number of nodes with smallest
distance to itself (closest)

• Go back to the interface and try the simulation with
this kind of network, evaluate the difference

To spread the graph display out a bit
• Add the command:

repeat 100 [layout-spring turtles links 0.2 5 2]
• Just before the “reset-ticks” command in the

setup procedure
• “layout-spring” just adjusts the gaps between

nodes as if they were connected with certain
kinds of spring – doing this 100 times

• This just makes the network easier to see –
NetLogo provides a number of varieties of
these for different network display styles

Add a plot
• Right-Click on some empty space and choose “Plot”, then

enter the following information before pressing “OK”

To add a new plot line,
press the “Add Pen”
button. To change the
pen name click on the
name, delete the
existing name and
type your own. To
change the colour,
click on the colour,
choose a colour and
then “OK”.

Stage of Debugging
• Most coding time is not spent making the

original simulation but in “fixing” it or adding
more code in (e.g. plots, new aspects)

• More careful design can help reduce time
spent debugging but it still dominates

There are different stages of debugging (in order
of both occurrence and difficulty):
1. Fixing syntax errors so the code runs
2. Making the micro-level behaviours work as

you intended them to (verification)
3. Making the resultant outcomes be as you

want them to be (tuning and validation)

Strategies for debugging

• Keep adding more graphs, monitors,
visualisations etc. so you better understand
what is happening

• Turn parts of the behaviours “off” by
temporarily changing the code (e.g. make
all prices fixed) to see what happens

• Temporarily adding “show” statements into
the code to show what is happening, e.g.
– show (word "Food of " self " is " food)

Agent Case Studies

• Global outputs such as graphs, monitors,
visualisations can only go so far…

• There is often nothing else for it but to
follow a particular agent step by step
checking what it does and its state each
time compared to the code

• This is time-consuming and everybody tries
to avoid doing it…

• …you often will simply not really understand
your simulation unless you do!

	NetLogo
	NetLogo – Interface Panel
	Typing in Commands
	Inspecting Patches and Agents
	Some important ideas
	Using “ask”
	Running a simulation (the hard way!)
	The Program Code
	Parts of the Code
	To change the program…
	The Information Tab
	Adding a button and running the code (the fast way!)
	Adding a button and running the code for only 10 steps
	Types of Agent
	Reacting to other agents
	Fixed vs. Reactive vs. Adaptive vs. Reflective Agents vs. …
	The “voter” simulation
	“AgentSets” in NetLogo
	The importance of visualisations
	Discussion – Interpreting an ABM
	A change to the simulation setup
	Randomness!
	Interaction Structures
	Making & using a network in NetLogo
	Adding a choice of network I
	Adding a choice of network II
	To spread the graph display out a bit
	Add a plot
	Stage of Debugging
	Strategies for debugging
	Agent Case Studies

