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J. Bikker  -  April - June 2024  -  Lecture 6: “Caching (2)”

Welcome! 



Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide   (to Pleasing the Cache)



Recap
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Three types of cache

▪ Fully associative

▪ Direct mapped

▪ N-set associative

In an N-set associative cache, each memory 
address can be stored in N  slots.

Example: 
▪ 32KB, 8-way set-associative, 64 bytes per 

cache line: 64 sets of 512 bytes.

Recap
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32KB, 8-way set-associative, 64 bytes per cache line:  64 sets of 512 bytes

Fetching a byte at address a:

offset = a & 63
set = (a >> 6) & 63
tag = a >> 12, range: 0 .. 220-1

return cache[tag][0..7].data[offset]

Recap
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32-bit address

31 6 5            01112
offsetset nrtag



32KB, 8-way set-associative, 64 bytes per cache line: 
64 sets of 512 bytes

Recap
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se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5            01112
offsetset nrtag

offset: 110100b = 52

set: 001000b = 8



32KB, 8-way set-associative, 64 bytes per cache line: 
64 sets of 512 bytes

Recap
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32KB, 8-way set-associative, 64 bytes per cache line: 
64 sets of 512 bytes

Recap
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Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide   (to Pleasing the Cache)



Why do Caches Work?

1. Because we tend to reuse data.
2. Because we tend to work on a small subset of our data.
3. Because we tend to operate on data in patterns.
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Data Locality



Reusing data

▪ Very short term: variable ‘i’ being used intensively in a loop  ➔ register

▪ Short term: lookup table for square roots being used on every input element ➔ L1 cache

▪ Mid-term: particles being updated every frame ➔ L2, L3 cache

▪ Long term: sound effect being played ~ once a minute ➔ RAM

▪ Very long term: playing the same game disk every night ➔ disk
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Data Locality



Reusing data

Ideal pattern:

▪ load data sequentially.

Typical pattern:

▪ whatever the algorithm dictates.
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Data Locality
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Data Locality

Example: rotozooming
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Data Locality

Example: rotozooming
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Data Locality

Method:

      X =  1 1 0 0 0 1 0 1 1 0 1 1 0 1

      Y = 1 0 1 1 0 1 1 0 1 0 1 1 1 0

    ----------------------------------

address = 1101101000111001110011111001

Example: rotozooming

Improving data locality: z-order / Morton curve
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Data Locality

Data Locality

Wikipedia:

Temporal Locality – “If at one point in time a particular memory location is referenced, 
then it is likely that the same location will be referenced again in the near future.”

Spatial Locality – “If a particular memory location is referenced at a particular time, 
then it is likely that nearby memory locations will be referenced in the near future.”

* More info: http://gameprogrammingpatterns.com/data-locality.html 

http://gameprogrammingpatterns.com/data-locality.html
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Data Locality

Data Locality

How do we increase data locality?

Linear access – Sometimes as simple as swapping for loops *

Tiling – Example of working on a small subset of the data at a time.

Streaming – Operate on/with data until done.

Reducing data size – Smaller things are closer together.

How do trees/linked lists/hash tables fit into this?

* For an elaborate example see https://www.cs.duke.edu/courses/cps104/spring11/lects/19-cache-sw2.pdf 

https://www.cs.duke.edu/courses/cps104/spring11/lects/19-cache-sw2.pdf
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▪ Data Locality
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▪ Experiments

▪ A Handy Guide   (to Pleasing the Cache)



Cache line size and data alignment

What is wrong with this struct?

struct Particle
{
   float x, y, z;
   float vx, vy, vz;
   float mass;
};
// size: 28 bytes

Two particles will fit in a cache line (taking up 56 bytes). 
The next particle will be in  two  cache lines.
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Alignment

 Better:

struct Particle
{
   float x, y, z;
   float vx, vy, vz;
   float mass, dummy;
};
// size: 32 bytes

 Note:

As soon as we read any field 
from a particle, the other fields 
are guaranteed to be in L1 cache.

If you update x, y and z in one 
loop, and vx, vy, vz in a second 
loop, it is better to merge the two 
loops.



Cache line size and data alignment

What is wrong with this allocation?

struct Particle
{
   float x, y, z;
   float vx, vy, vz;
   float mass, dummy;
};
// size: 32 bytes
Particle particles[512];

Although two particles will fit in a cache line, we have no 
guarantee that the address of the first particle is a 
multiple of 64.
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Alignment

Note:

Is it bad if particles straddle a 
cache line boundary?

Not necessarily: if we read the 
array sequentially, we sometimes 
get 2, but sometimes 0 cache 
misses.

For random access, this is not a 
good idea.



Cache line size and data alignment

Controlling the location in memory of arrays:

An address that is dividable by 64 has its lowest 6 bits set 
to zero. In hex: all addresses ending with 40, 80 and C0.

Enforcing this:

Particle* particles = 
_aligned_malloc(512 * sizeof( Particle ), 64);

Or:

__declspec(align(64)) struct Particle { … };
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Alignment
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Multiple Cores using Caches

Two cores can hold copies of the same data.

Not as unlikely as you may think – Example:

byte data = new byte[COUNT];
for( int i = 0; i < COUNT; i++ )
   data[i] = rand() % 256;
// count byte values
int counter[256];
for( int i = 0; i < COUNT; i++ )
   counter[byteArray[i]]++;
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False Sharing
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Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide   (to Pleasing the Cache)



Cache Size

Basic test: 

▪ random access
▪ increasing data size

Additional test:

▪ payload size
▪ data type

Additional test:

▪ straddling cache lines
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Experiments



Cache Size

Basic test: 

▪ random access
▪ increasing data size

Additional test:

▪ payload size
▪ data type

Additional test:

▪ straddling cache lines
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Experiments

     Observations:

▪ Cache effects are clearly visible
▪ Memory is very expensive
▪ Payload size is irrelevant
▪ Datatype is irrelevant
▪ Straddling is irrelevant (!)
▪ …



Linear Data Access (1)

Horizontal versus vertical…

Experiment:

Getting it to work

▪ suspiciously fast…
▪ …until we include i in the result. ☺

Changing access pattern

▪ running average
▪ swapping loops
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Experiments



Linear Data Access

Horizontal versus vertical…

Experiment:

Getting it to work

▪ suspiciously fast…
▪ …until we include i in the result. ☺

Changing access pattern

▪ running average
▪ swapping loops
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Experiments
     Observations:

▪ Compiler is clever
▪ Linear access matters!
▪ …



False Sharing

Experiment:

▪ Counting, single-threaded
▪ Counting, multi-threaded
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Experiments

     Observations:

▪ False sharing is no joke!
▪ Use per-thread counters.

     Common pitfall:

▪ Random number generator seed
▪ Any case of ‘why is this not scaling’.
▪ Solution: Use thread_local keyword.https://cdrdv2-public.intel.com/671363/vtune-

tutorial-linux-identifying-false-sharing.pdf
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How to Please the Cache

Or: “how to evade RAM”

1. Keep your data in registers

Use fewer variables
Limit the scope of your variables
Pack multiple values in a single variable
Use floats and ints (they use different registers)
Compile for 64-bit (more registers)
Arrays will never go in registers
Unions technically can never go in registers
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Easy Steps



How to Please the Cache

Or: “how to evade RAM”

2. Keep your data local

Read sequentially
Keep data small
Use tiling / Morton order
Fetch data once, work until done (streaming)
Reuse memory locations
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Easy Steps



How to Please the Cache

Or: “how to evade RAM”

3. Respect cache line boundaries

Use padding if needed
Don’t pad for sequential access
Use aligned malloc / __declspec align
Assume 64-byte cache lines
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Easy Steps



How to Please the Cache

Or: “how to evade RAM”

4. Advanced tricks

Prefetch
Use a prefetch thread (theoretical…)
Use streaming writes
Separate mutable / immutable data
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Easy Steps



How to Please the Cache

Or: “how to evade RAM”

5. Be informed

Use the profiler!
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Easy Steps
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/INFOMOV/

END of “Caching (2)”
next lecture: “GPGPU (1)”
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