
/INFOM V/
Optimization & Vectorization

J. Bikker - April - June 2024 - Lecture 6: “Caching (2)”

Welcome!

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

Recap

INFOMOV – Lecture 6 – “Caching (2)” 7

registers:
0 cycles

level 1 cache: 4 cycles

level 2 cache: 11 cycles

level 3 cache: 39 cycles

RAM: 100+ cycles

32KB I / 32KB D per core

 256KB per core

 8MB

 𝑥 GB

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

L3 $

Three types of cache

▪ Fully associative

▪ Direct mapped

▪ N-set associative

In an N-set associative cache, each memory
address can be stored in N slots.

Example:
▪ 32KB, 8-way set-associative, 64 bytes per

cache line: 64 sets of 512 bytes.

Recap

INFOMOV – Lecture 6 – “Caching (2)” 8

32KB, 8-way set-associative, 64 bytes per cache line: 64 sets of 512 bytes

Fetching a byte at address a:

offset = a & 63
set = (a >> 6) & 63
tag = a >> 12, range: 0 .. 220-1

return cache[tag][0..7].data[offset]

Recap

INFOMOV – Lecture 6 – “Caching (2)” 9

32-bit address

31 6 5 01112
offsetset nrtag

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 6 – “Caching (2)” 10

se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5 01112
offsetset nrtag

offset: 110100b = 52

set: 001000b = 8

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 6 – “Caching (2)” 11

se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5 01112
offsetset nrtag

32KB, 8-way set-associative, 64 bytes per cache line:
64 sets of 512 bytes

Recap

INFOMOV – Lecture 6 – “Caching (2)” 12

se
t:

 0
..6

3
 (

6
 b

it
)

slot (0..7)

Examples:

0x00001234 0001 001000 110100
0x00008234 1000 001000 110100
0x00006234 0110 001000 110100
0x0000A234 1010 001000 110100
0x0000A240 1010 001001 000000
0x0000F234 1111 001000 110100

32-bit address

31 6 5 01112
offsetset nrtag

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

Why do Caches Work?

1. Because we tend to reuse data.
2. Because we tend to work on a small subset of our data.
3. Because we tend to operate on data in patterns.

INFOMOV – Lecture 6 – “Caching (2)” 14

Data Locality

Reusing data

▪ Very short term: variable ‘i’ being used intensively in a loop ➔ register

▪ Short term: lookup table for square roots being used on every input element ➔ L1 cache

▪ Mid-term: particles being updated every frame ➔ L2, L3 cache

▪ Long term: sound effect being played ~ once a minute ➔ RAM

▪ Very long term: playing the same game disk every night ➔ disk

INFOMOV – Lecture 6 – “Caching (2)” 15

Data Locality

Reusing data

Ideal pattern:

▪ load data sequentially.

Typical pattern:

▪ whatever the algorithm dictates.

INFOMOV – Lecture 6 – “Caching (2)” 16

Data Locality

INFOMOV – Lecture 6 – “Caching (2)” 17

Data Locality

Example: rotozooming

INFOMOV – Lecture 6 – “Caching (2)” 18

Data Locality

Example: rotozooming

INFOMOV – Lecture 6 – “Caching (2)” 19

Data Locality

Method:

 X = 1 1 0 0 0 1 0 1 1 0 1 1 0 1

 Y = 1 0 1 1 0 1 1 0 1 0 1 1 1 0

address = 1101101000111001110011111001

Example: rotozooming

Improving data locality: z-order / Morton curve

INFOMOV – Lecture 6 – “Caching (2)” 20

Data Locality

Data Locality

Wikipedia:

Temporal Locality – “If at one point in time a particular memory location is referenced,
then it is likely that the same location will be referenced again in the near future.”

Spatial Locality – “If a particular memory location is referenced at a particular time,
then it is likely that nearby memory locations will be referenced in the near future.”

* More info: http://gameprogrammingpatterns.com/data-locality.html

http://gameprogrammingpatterns.com/data-locality.html

INFOMOV – Lecture 6 – “Caching (2)” 21

Data Locality

Data Locality

How do we increase data locality?

Linear access – Sometimes as simple as swapping for loops *

Tiling – Example of working on a small subset of the data at a time.

Streaming – Operate on/with data until done.

Reducing data size – Smaller things are closer together.

How do trees/linked lists/hash tables fit into this?

* For an elaborate example see https://www.cs.duke.edu/courses/cps104/spring11/lects/19-cache-sw2.pdf

https://www.cs.duke.edu/courses/cps104/spring11/lects/19-cache-sw2.pdf

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

Cache line size and data alignment

What is wrong with this struct?

struct Particle
{
 float x, y, z;
 float vx, vy, vz;
 float mass;
};
// size: 28 bytes

Two particles will fit in a cache line (taking up 56 bytes).
The next particle will be in two cache lines.

INFOMOV – Lecture 6 – “Caching (2)” 23

Alignment

 Better:

struct Particle
{
 float x, y, z;
 float vx, vy, vz;
 float mass, dummy;
};
// size: 32 bytes

 Note:

As soon as we read any field
from a particle, the other fields
are guaranteed to be in L1 cache.

If you update x, y and z in one
loop, and vx, vy, vz in a second
loop, it is better to merge the two
loops.

Cache line size and data alignment

What is wrong with this allocation?

struct Particle
{
 float x, y, z;
 float vx, vy, vz;
 float mass, dummy;
};
// size: 32 bytes
Particle particles[512];

Although two particles will fit in a cache line, we have no
guarantee that the address of the first particle is a
multiple of 64.

INFOMOV – Lecture 6 – “Caching (2)” 24

Alignment

Note:

Is it bad if particles straddle a
cache line boundary?

Not necessarily: if we read the
array sequentially, we sometimes
get 2, but sometimes 0 cache
misses.

For random access, this is not a
good idea.

Cache line size and data alignment

Controlling the location in memory of arrays:

An address that is dividable by 64 has its lowest 6 bits set
to zero. In hex: all addresses ending with 40, 80 and C0.

Enforcing this:

Particle* particles =
_aligned_malloc(512 * sizeof(Particle), 64);

Or:

__declspec(align(64)) struct Particle { … };

INFOMOV – Lecture 6 – “Caching (2)” 25

Alignment

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

Multiple Cores using Caches

Two cores can hold copies of the same data.

Not as unlikely as you may think – Example:

byte data = new byte[COUNT];
for(int i = 0; i < COUNT; i++)
 data[i] = rand() % 256;
// count byte values
int counter[256];
for(int i = 0; i < COUNT; i++)
 counter[byteArray[i]]++;

INFOMOV – Lecture 6 – “Caching (2)” 27

False Sharing

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

L3 $

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

Cache Size

Basic test:

▪ random access
▪ increasing data size

Additional test:

▪ payload size
▪ data type

Additional test:

▪ straddling cache lines

INFOMOV – Lecture 6 – “Caching (2)” 29

Experiments

Cache Size

Basic test:

▪ random access
▪ increasing data size

Additional test:

▪ payload size
▪ data type

Additional test:

▪ straddling cache lines

INFOMOV – Lecture 6 – “Caching (2)” 30

Experiments

 Observations:

▪ Cache effects are clearly visible
▪ Memory is very expensive
▪ Payload size is irrelevant
▪ Datatype is irrelevant
▪ Straddling is irrelevant (!)
▪ …

Linear Data Access (1)

Horizontal versus vertical…

Experiment:

Getting it to work

▪ suspiciously fast…
▪ …until we include i in the result. ☺

Changing access pattern

▪ running average
▪ swapping loops

INFOMOV – Lecture 6 – “Caching (2)” 31

Experiments

Linear Data Access

Horizontal versus vertical…

Experiment:

Getting it to work

▪ suspiciously fast…
▪ …until we include i in the result. ☺

Changing access pattern

▪ running average
▪ swapping loops

INFOMOV – Lecture 6 – “Caching (2)” 32

Experiments
 Observations:

▪ Compiler is clever
▪ Linear access matters!
▪ …

False Sharing

Experiment:

▪ Counting, single-threaded
▪ Counting, multi-threaded

INFOMOV – Lecture 6 – “Caching (2)” 33

Experiments

 Observations:

▪ False sharing is no joke!
▪ Use per-thread counters.

 Common pitfall:

▪ Random number generator seed
▪ Any case of ‘why is this not scaling’.
▪ Solution: Use thread_local keyword.https://cdrdv2-public.intel.com/671363/vtune-

tutorial-linux-identifying-false-sharing.pdf

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

How to Please the Cache

Or: “how to evade RAM”

1. Keep your data in registers

Use fewer variables
Limit the scope of your variables
Pack multiple values in a single variable
Use floats and ints (they use different registers)
Compile for 64-bit (more registers)
Arrays will never go in registers
Unions technically can never go in registers

INFOMOV – Lecture 6 – “Caching (2)” 35

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

2. Keep your data local

Read sequentially
Keep data small
Use tiling / Morton order
Fetch data once, work until done (streaming)
Reuse memory locations

INFOMOV – Lecture 6 – “Caching (2)” 36

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

3. Respect cache line boundaries

Use padding if needed
Don’t pad for sequential access
Use aligned malloc / __declspec align
Assume 64-byte cache lines

INFOMOV – Lecture 6 – “Caching (2)” 37

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

4. Advanced tricks

Prefetch
Use a prefetch thread (theoretical…)
Use streaming writes
Separate mutable / immutable data

INFOMOV – Lecture 6 – “Caching (2)” 38

Easy Steps

How to Please the Cache

Or: “how to evade RAM”

5. Be informed

Use the profiler!

INFOMOV – Lecture 6 – “Caching (2)” 39

Easy Steps

Today’s Agenda:

▪ Recap

▪ Data Locality

▪ Alignment

▪ False Sharing

▪ Experiments

▪ A Handy Guide (to Pleasing the Cache)

/INFOMOV/

END of “Caching (2)”
next lecture: “GPGPU (1)”

	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

