
/INFOMOV/
Optimization & Vectorization

J. Bikker - April – June 2024 - Lecture 4: “Caching (1)”

Welcome!

Today’s Agenda:

▪ The Problem with Memory

▪ Cache Architectures

2 4 8 3 2 81 3 9 0 7 0

× 1.7856

Today’s Agenda:

▪ The Problem with Memory

▪ Cache Architectures

Introduction

Feeding the Beast

Let’s assume our CPU runs at 4Ghz.
What is the maximum physical distance between
memory and CPU if we want to retrieve data every
cycle?

Speed of light (vacuum): 299,792,458 m/s
Per cycle: ~0.075 m
➔~3.75cm back and forth.

In other words: we cannot physically query RAM
fast enough to keep a CPU running at full speed.

INFOMOV – Lecture 4 – “Caching (1)” 5

i7-4790K (4Ghz)
177 mm2 (~22x8mm)

Note: signals in electronics do not propagate at the speed of light:
https://en.wikipedia.org/wiki/Velocity_factor#Typical_velocity_factors
TL;DR: It’s between 0.6c .. 0.99c.

https://en.wikipedia.org/wiki/Velocity_factor#Typical_velocity_factors

Introduction

Feeding the Beast

Sadly, we can’t just divide by the physical distance between CPU
and RAM to get the cycles required to query memory.

Factors include (stats for DDR4-3200/PC4-25600):

▪ RAM runs at a much lower clock speed than the CPU

▪ 25600 here means: theoretical bandwidth in MB/s
▪ 3200 is the number of transfers per second (1 transfer=64bit)
▪ We get two transfers per cycle, so actual I/O clock speed is 1600Mhz
▪ DRAM cell array clock is ~1/4th of that: 400Mhz.

▪ Latency between query and response: 20-24 cycles.

INFOMOV – Lecture 4 – “Caching (1)” 6

Introduction

Feeding the Beast

Sadly, we can’t just divide by the physical distance between CPU
and RAM to get the cycles required to query memory.

Factors include (stats for DDR4-3200/PC4-25600):

▪ Latency between query and response: 20-24 cycles.

INFOMOV – Lecture 4 – “Caching (1)” 7

SRAM:

▪ Maintains data as long as 𝑉𝑑𝑑
is powered (no refresh).

▪ Bit available on 𝐵𝐿 and 𝐵𝐿 as
soon as 𝑊𝐿 is raised (fast).

▪ Six transistors per bit ($).
▪ Continuous power ($$$).

Introduction

Feeding the Beast

Sadly, we can’t just divide by the physical distance between CPU
and RAM to get the cycles required to query memory.

Factors include (stats for DDR4-3200/PC4-25600):

▪ Latency between query and response: 20-24 cycles.

INFOMOV – Lecture 4 – “Caching (1)” 8

DRAM:

▪ Stores state in capacitor C.
▪ Reading: raise AL, see if there

is current flowing.
▪ Needs rewrite.
▪ Draining takes time.
▪ Slower but cheap.
▪ Needs refresh.

Introduction

Feeding the Beast

Sadly, we can’t just divide by the physical distance between CPU
and RAM to get the cycles required to query memory.

Factors include (stats for DDR4-3200/PC4-25600):

▪ Latency between query and response: 20-24 cycles.

INFOMOV – Lecture 4 – “Caching (1)” 9

Introduction

Feeding the Beast

Sadly, we can’t just divide by the physical distance between CPU
and RAM to get the cycles required to query memory.

Additional delays may occur when:

▪ Other devices than the CPU access RAM;

▪ DRAM must be refreshed every 64ms due to leakage.

For a processor running at 2.66GHz, latency
is roughly 110-140 CPU cycles.

Details in: “What Every Programmer Should Know About Memory”, Chapter 2.

INFOMOV – Lecture 4 – “Caching (1)” 10

Introduction

Feeding the Beast

“We cannot physically query RAM fast enough
to keep a CPU running at full speed.”

How do we overcome this?

We keep a copy of frequently used data in fast
SRAM memory, close to the CPU: the cache.

INFOMOV – Lecture 4 – “Caching (1)” 11

Introduction

The Memory Hierarchy – Core i7-9xx (4 cores)

registers:
0 cycles

level 1 cache: 4 cycles

level 2 cache: 11 cycles

level 3 cache: 39 cycles

RAM: 100+ cycles

32KB I / 32KB D per core

 256KB per core

 8MB

 𝑥 GB

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

T0

T1

L1 I-$

L1 D-$
L2 $

L3 $

INFOMOV – Lecture 4 – “Caching (1)” 12

Introduction

Caches and Optimization

Considering the cost of RAM vs L1$ access, it is clear that the cache is an
important factor in code optimization:

▪ Fast code communicates mostly with the caches
▪ We still need to get data into the caches
▪ But ideally, only once.

Therefore:

▪ The working set must be small;
▪ Or we must maximize data locality.

INFOMOV – Lecture 4 – “Caching (1)” 13

Today’s Agenda:

▪ The Problem with Memory

▪ Cache Architectures

Cache Architecture

The simplest caching scheme is the
fully associative cache.

struct CacheLine
{
 uint address; // 32-bit for 4G
 uchar data;
 bool valid;
};
CacheLine cache[256];

This cache holds 256 bytes.

This cache has an administrative overhead
of 33x256 bits = ~8KB.

Architectures
address data valid

0x00000000 0xFF 0

0x00000000 0xFF 0

0x00000000 0xFF 0

0x00000000 0xFF 0

0x00000000 0xFF 0

… … …

0x00000000 0xFF 0

Notes on this layout:

▪ We will rarely need 1 byte at a time
▪ So, we switch to 32bit values
▪ We will never read those at addresses that

are not a multiple of 4
▪ So, we drop 2 bits from the address field

(and: we rename it to tag).

INFOMOV – Lecture 4 – “Caching (1)” 15

Cache Architecture

The simplest caching scheme is the
fully associative cache.

struct CacheLine
{
 uint tag; // 30 bit for 4G
 uint data;
 bool valid, dirty;
};
CacheLine cache[64];

This cache holds 64 dwords (256 bytes).

This time, the administrative overhead is
32 * 64 = 2KB.

Architectures
tag data valid dirty

0x00000000 0xFFFFFFFF 0 0

0x00000000 0xFFFFFFFF 0 0

0x00000000 0xFFFFFFFF 0 0

0x00000000 0xFFFFFFFF 0 0

0x00000000 0xFFFFFFFF 0 0

… …

0x00000000 0xFFFFFFFF 0 0

INFOMOV – Lecture 4 – “Caching (1)” 16

Cache Architecture

The simplest caching scheme is the
fully associative cache.

struct CacheLine
{
 uint tag; // 30 bit for 4G
 uint data;
 bool valid, dirty;
};
CacheLine cache[64];

This cache holds 64 dwords (256 bytes).

Architectures Single-byte read operation:

for (int i = 0; i < 64; i++)
 if (cache[i].valid)
 if (cache[i].tag == tag)
 return cache[i].data[offs];

uint d = RAM[tag].data; // cache miss

WriteToCache(tag, d);

return d[offs];

INFOMOV – Lecture 4 – “Caching (1)” 17

tag offs

address

1 031 2

Cache Architecture

The simplest caching scheme is the
fully associative cache.

struct CacheLine
{
 uint tag; // 30 bit for 4G
 uint data;
 bool valid, dirty;
};
CacheLine cache[64];

This cache holds 64 dwords (256 bytes).

Architectures Single-byte write operation:

for (int i = 0; i < 64; i++)
 if (cache[i].valid)
 if (cache[i].tag == a)
 cache[i].data[offs] = d;
 cache[i].dirty = true;
 return;

for (int i = 0; i < 64; i++)
 if (!cache[i].valid)
 cache[i].tag = a;
 cache[i].data[offs] = d;
 cache[i].valid|dirty = true;
 return;

i = BestSlotToOverwrite();

if (cache[i].dirty) SaveToRam(i);
cache[i].tag = a;
cache[i].data[offs] = d;
cache[i].valid|dirty = true;

INFOMOV – Lecture 4 – “Caching (1)” 18

One problem remains… We store one byte, but the
slot stores 4. What should we do with the other 3?

BestSlotToOverwrite() ?

The best slot to overwrite is the one that will not be needed for the longest amount
of time. This is known as Bélády’s algorithm, or the clairvoyant algorithm.

Alternatively, we can use:

▪ LRU: least recently used
▪ MRU: most recently used
▪ Random Replacement
▪ LFU: Least frequently used
▪ …

AMD and Intel use ‘pseudo-LRU’ (until Ivy Bridge; after that, things got complex*).

*: http://blog.stuffedcow.net/2013/01/ivb-cache-replacement

Architectures

INFOMOV – Lecture 4 – “Caching (1)” 19

In case thit isn’t obvious: this is a
hypothetical algorithm; the best option if
we actually had a crystal orb.

http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

The Problem with Being Fully Associative

Read / Write using a fully associative cache is O(N): we need to scan each entry. This
is not practical for anything beyond 16~32 entries.

An alternative scheme is the direct mapped cache.

Architectures

INFOMOV – Lecture 4 – “Caching (1)” 20

Direct Mapped Cache

struct CacheLine
{
 uint tag; // 24 bit for 4G
 uint data;
 bool dirty, valid;
};
CacheLine cache[64];

This cache again holds 256 bytes.

Architectures

In a direct mapped cache, each address can
only be stored in a single cache line.

Read/write access is therefore O(1).

For a cache consisting of 64 cache lines:

▪ Bit 0 and 1 still determine the offset
within a slot;

▪ 6 bits are used to determine which slot to
use;

▪ The remaining 24 bits form the tag.

INFOMOV – Lecture 4 – “Caching (1)” 21

tag offs

address

1 031 8 7 2

slot

Direct Mapped Cache

In general:

𝑁 = log2(𝑐𝑎𝑐ℎ𝑒 𝑙𝑖𝑛𝑒 𝑤𝑖𝑑𝑡ℎ)
𝑀 = log2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒)

▪ Bits 0..N-1 are used as offset in a cache line;
▪ Bits N..M-1 are used as slot index;
▪ Bits M..31 are used as tag.

Architectures

32-bit address

31 N N-1 0M+N-1M+N

INFOMOV – Lecture 4 – “Caching (1)” 22

The Problem with Direct Mapping

In this type of cache, each address maps to a single cache line,
leading to O(1) access time. On the other hand, a single cache
line ‘represents’ multiple memory addresses.

This leads to a number of issues:

▪ A program may use two variables that occupy the same
cache line, resulting in frequent cache misses (collisions);

▪ A program may heavily use one part of the cache, and
underutilize another.

Architectures

0000000

0000004

0000008

000000C

0000010

0000014

0000018

000001C

0000020

0000024

0000028

000002C

0000030

0000034

0000038

000003C

RAM

cache

INFOMOV – Lecture 4 – “Caching (1)” 23

N-Way Set Associative Cache

struct CacheLine
{
 uint tag;
 uint data;
 bool valid, dirty;
};
CacheLine cache[16][4];

This cache again holds 256 bytes.

Architectures

In an N-way set associative cache, we use N slots
(cache lines) per set.

INFOMOV – Lecture 4 – “Caching (1)” 24

tag offs

address

1 031 4 3 2

set

0000

0001

0002

0003

slot 0 slot 1 slot 2 slot 3

set

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

N-Way Set Associative Cache

struct CacheLine
{
 uint tag; // 28 bit for 4G
 uint data;
 bool valid, dirty;
};
CacheLine cache[16][4];

This cache again holds 256 bytes.

Architectures

In an N-way set associative cache, we use N slots
(cache lines) per set.

0000

0001

0002

0003

When reading / writing data, we
check each of the N slots that may
contain the data.

Example: Address 0x00FF1004

Offset: lowest 2 bits ➔ 0.
Set: next 4 bits ➔ 1.
Tag: remaining bits.

slot 0 slot 1 slot 2 slot 3

INFOMOV – Lecture 4 – “Caching (1)” 25

tag offs

address

1 031 6 5 2

set

set

Caching Architectures

The Intel i7 processors use three on-die caches:

L1: 32KB 4-way set associative instruction cache + 32KB 8-way data cache per core
L2: 256KB 8-way set associative cache per core
L3: 2MB x cores global 16-way set associative cache.

The AMD Phenom also uses three on-die caches:

L1: 64KB 2-way set associative (32+32) per core
L2: 512KB 16-way set associative per core
L3: 1MB x cores global 48-way set associative cache.

Both AMD and Intel currently use 64 byte cache lines.

Architectures

INFOMOV – Lecture 4 – “Caching (1)” 26

32KB, 4-Way Set Associative Cache

struct CacheLine
{
 uint tag; // 19 bit for 4G
 uchar data[64];
 bool valid, dirty;
};
CacheLine cache[128][4];

This cache holds 32768 bytes in 512 cachelines,
organized in 128 sets of 4 cachelines.

Architectures
slot 0 slot 1 slot 2 slot 3

INFOMOV – Lecture 4 – “Caching (1)” 27

tag offs

address

5 031 13 12 6

set

Today’s Agenda:

▪ The Problem with Memory

▪ Cache Architectures

/INFOMOV/

END of “Caching (1)”
next lecture: “SIMD (1)”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 32

