
Lecture 1 Supplementary Material: Linear Algebra
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 The magnitude (length) of a vector is:

 Unit vector (magnitude=1.0)
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 How do you find the angle θ between vectors 
a and b?

a

b θ















 
=













 
=

=

−

ba

ba

ba

ba

baba

1cos

cos

cos







a

b θ



b
θ a
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 If a and b are arbitrary (non-unit) vectors, 
then the following are still true:

▪ If θ < 90º then a·b > 0

▪ If θ = 90º then a·b = 0

▪ If θ > 90º then a·b < 0



a

u

a·u

 If  |u|=1.0  then a·u is the length of the projection of a
onto u
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 Dot product produces a scalar
 Cross product of two vectors is a vector

 Dot product applies to n dimensional vectors
 Cross product applies to 3 dimensional vectors

 Intuition:
▪ Dot product shows how much part of the vector a is 

in the same direction as vector b

▪ Cross product is how much part of the vector a is 
perpendicular to the vector b



 Find the area of the triangle defined by 3D 
points a, b, and c
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 An object is at position p with a unit length heading 
of h. We want to rotate it so that the heading is 
facing some target t. Find a unit axis a and an angle 
θ to rotate around.
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cos θ

sin θ

θ

cos2θ + sin2θ = 1
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 Law of Sines:

 Law of Cosines:



 A=
5 3
−1 4

 Det 𝐴 =
5 3
−1 4

= 5.4 – (-1.3) = 23

 Inv 𝐴 =
1

det(𝐴)
. adj A = 

1

23
.
4 −3
1 5

 Adj A = 
4 −3
1 5
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 Let’s say we have a 3D model that has an array of position 
vectors describing its shape
▪ We store all position vectors: vn where 0≤n≤NumVerts-1

 If we want to move the object (translate)
▪ 𝑣𝑛

′ = 𝑣𝑛 + 𝑑 (relative offset)

▪ 𝑣𝑥
′ = 𝑣𝑥 + 𝑑𝑥

▪ 𝑣𝑦
′ = 𝑣𝑦 + 𝑑𝑦

▪ 𝑣𝑧
′ = 𝑣𝑧 + 𝑑𝑧
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 Now, let’s rotate the object in the xy plane by an 
angle 𝜃, as if we were spinning it around the z 
axis

 𝑣𝑥
′ = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin(𝜃)

 𝑣𝑦
′ = 𝑣𝑥 𝑠𝑖𝑛 𝜃 + 𝑣𝑦cos(𝜃)

 𝑣𝑧
′ = 𝑣𝑧

 Note: a positive rotation will rotate the object 
counterclockwise when the rotation axis (z) is 
pointing towards the observer
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𝑣𝑥
′ = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin(𝜃)

𝑣𝑦
′ = 𝑣𝑥 𝑠𝑖𝑛 𝜃 + 𝑣𝑦cos(𝜃)

𝑣𝑧
′ = 𝑣𝑧

𝜃 = 30



 𝑣𝑥
′ = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin(𝜃) + 0𝑣𝑧

 𝑣𝑦
′ = 𝑣𝑥 𝑠𝑖𝑛 𝜃 + 𝑣𝑦cos(𝜃) + 0𝑣𝑧

 𝑣𝑧
′ = 0𝑣𝑥 + 0𝑣𝑦 + 1𝑣𝑧

 𝑣𝑥
′ 𝑣𝑦

′ 𝑣𝑧
′ = 𝑣𝑥 𝑣𝑦 𝑣𝑧 . −

cos(𝜃) sin 𝜃 0
sin(𝜃) cos(𝜃) 0
0 0 1

 𝑣′ = 𝑣.𝑀



 𝑅𝑥 𝜃 =

1 0 0
0 cos(𝜃) sin(𝜃)
0 −sin(𝜃) cos(𝜃)

 𝑅𝑦 𝜃 =
cos(𝜃) 0 −sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

 𝑅𝑧 𝜃 =
cos(𝜃) sin 𝜃 0
− sin(𝜃) cos(𝜃) 0

0 0 1



 If we have a vector v, and an x-axis rotation:

 If we then want to rotate it around y-axis:
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a, b, c, d are all constants (12 in total)



 How do we represent rotation and orientation 
together in a matrix?
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 3x3 rotation matrix and 3x1 translation vector 
combined in a 4x4 matrix (with [0 0 0 1] at the 
right)

 3D position vector v is changed to [vx vy vz 1]

 The line at the right is not used here but it is 
necessary when rendering objects as a 2D 
image



 First, let's look at how projective geometry 
works in 2D, before we move on to 3D.

 Imagine a projector that is projecting a 2D image 
onto a screen. 



 What happens when the projector goes closer to 
the screen?

 What is the role of W?



 Applying it to 3D
▪ When W increases the coordinate scales up and when W decreases it scales 

down. 
 Coordinates are said to be correct in 3D, only when W = 1. (convention)

▪ W < 1 everything would look too big
▪ W > 1 everything would look too small
▪ W = 0 division by zero error
▪ W < 0 everything would flip upside down and back-to-front

 (15,21,3) => (15/3, 21/3, 3/3) => (5, 7, 1)
 1/5 (10, 20, 30, 5) = (2, 4, 6, 1)



 Perspective is the phenomenon where an object appears smaller 
the further away it is from the camera. (because it is scaled down)

 A far-away mountain can appear to be smaller than a cat, if the cat 
is close enough to the camera.



 The right hand column can cause a 
projection, which we won’t use in character 
animation, so we leave it as 0,0,0,1

 Some books store their matrices in a 
transposed form. This is fine as long as you 
remember that: (A·B)T = BT·AT



 Perspective in 3D graphics is implemented by using a transformation 
matrix that changes the W element of each vertex.

 Z represent the distance, the larger the Z is, the more it needs to be 
scaled down.

 W effects the scale and it is related with Z

 Perspective projection matrix applied to a homogeneous coordinate
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 After the perspective projection matrix is 
applied, each vertex goes under perspective 
division.

 Converting a homogeneous coordinate back 
to W = 1. 

 ¼ (2,3,4,4) = (0.5, 0.75, 1, 1)
 After the perspective division, W is discarded.

▪ Correct 3D coordinate that has been scaled 
according to a 3D perspective projection



 Technically, homogeneous vectors are 4D 
vectors that get projected into the 3D w=1 
space
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 Vectors representing a position in 3D space can just 
be written as:

 Vectors representing direction are written:

 The only time the w coordinate will be something 
other than 0 or 1 is in the projection phase of 
rendering, which is not our problem
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 Computer graphics apps commonly use 4x4 homogeneous 
matrices

 A rigid 4x4 matrix transformation looks like this:

 Where a, b, & c are orthogonal unit length vectors 
representing orientation, and d is a vector representing 
position
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 The space that an object is defined in is called object 
space or local space

 The object is located at or near the origin and is aligned 
with the xyz axes

 The units in this space can be whatever we choose (i.e. 
meters, etc)

 A 3D object would be stored on disk and in memory in this 
coordinate system

 When we draw the object, we want to transform it into 
another space



 We will define a new space called world space or global space

 This space represents a 3D world or scene and may contain several 
objects in various locations

 Every object in the world needs a matrix that transforms its 
vertices from its own object space into the world space

 We call this object’s world matrix

 For example, if we have 100 chairs in a room, we only need to 
store the object space data for one chair once.

 We can use 100 different matrices to transform the chair model 
into 100 locations in the world.



 The 9 constants make up 3 vectors a, b and c

 If we think of the matrix as a transformation 
from object to world space
▪ the a vector is essentially the object’s x-axis 

rotated in world space

▪ b is its y-axis in world space

▪ and c is its z-axis in world space. 

 d is the position in world space



 Take one more look at the identity matrix

 Its a axis lines up with x, b lines up with y, and c lines up with z

 Position d is at the origin

 Therefore, it represents a transformation with no rotation or 
translation
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 𝑅𝑥 𝜃 =

1 0 0
0 cos(𝜃) sin(𝜃)

0 −sin(𝜃) cos(𝜃)

 𝑅𝑦 𝜃 =
cos(𝜃) 0 −sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

 𝑅𝑧 𝜃 =
cos(𝜃) sin 𝜃 0
− sin(𝜃) cos(𝜃) 0

0 0 1
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 For example, a translation by vector r 
followed by a z-axis rotation is:
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 If the upper 3x3 portion is orthonormal, we 
say that 4x4 matrix is rigid

▪ only translated and rotated (it will not have any 
scale or shears which distort the object)



 If all row vectors and all column vectors of a 
matrix are unit length, that matrix is said to 
be orthonormal

 This also implies that all vectors are 
perpendicular to each other

 Orthonormal matrices have some useful 
mathematical properties, such as:
▪ M-1 = MT



 If a 4x4 matrix represents a rigid 
transformation, then the upper 3x3 portion 
will be orthonormal
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 The determinant is a scalar value that represents 
the volume change that the transformation will 
cause

 An orthonormal matrix will have a determinant of 1, 
but non-orthonormal volume preserving matrices 
will have a determinant of 1 also

 A degenerate matrix has a determinant of 0

 A matrix that has been mirrored will have a negative 
determinant
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 The row vectors of M’ are the row vectors of M transformed 
by matrix N

 Notice that a, b, and c transform as direction vectors and d
transforms as a position
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 Computer Animation, Rick Parent, 
Chapter 2 and Appendix

 Khan Academy online courses
▪ Linear Algebra and Calculus
▪ https://www.khanacademy.org/

 Some of the slides of this lecture 
are based on the Computer 
Animation course at the University 
of California San Diego.

https://www.khanacademy.org/
https://cseweb.ucsd.edu/classes/sp16/cse169-a/index.html

