Lecture 1 Supplementary Material: Linear Algebra

Computer Animation




Vector Arithmetic
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Vector Magnitude

The magnitude (length) of a vector is:

2 2 2
V| = \/vx +V, +V,
Unit vector (magnitude=1.0)

v
v



Dot Product

a-b=ab, +ab, +ab, => abh,
a-b=lalblcosd



Example: Angle Between Vectors

How do you find the angle 8 between vectors
aandb?



Example: Angle Between Vectors

a-b=lalblcosd
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Dot Products with Unit Vectors




Dot Products with Non-Unit Vectors

If aand b are arbitrary (non-unit) vectors,
then the following are still true:

fB<go°thena-b>o0
f@=90°thena-b=o0

f6>90°thena-b<o



Dot Products with One Unit Vector

If |u|=1.0 then a-uis the length of the projection of a
onto u




Cross Product

I ] K
axb=l|a, a, a,
b, b, b,

a><b=[aybz—azby a,b,—ab, ab —a b]



Properties of the Cross Product

axb|=alblsin &
ax b| = area of parallelogram ab

axb|=0 ifaandb are parallel

axb is perpendicular to both a and b,
In the direction defined by the right
hand rule



Right and left handed coordinate

Lett hand Righ{ hand



Dot vs Cross product

Dot product produces a scalar
Cross product of two vectors is a vector

Dot product applies to n dimensional vectors
Cross product applies to 3 dimensional vectors

Intuition:

Dot product shows how much part of the vector ais
in the same direction as vectorb

Cross product is how much part of the vector ais
perpendicular to the vectorb



Example: Area of a Triangle

Find the area of the triangle defined by 3D
pointsa, b, and ¢

C



Example: Area of a Triangle

area = %\(b ~a)x(c-a)

C-a



Example: Alignment to Target

An object is at position p with a unit length heading
of h. We want to rotate it so that the heading is
facing some target t. Find a unit axis a and an angle
O to rotate around.

P



Example: Alignment to Target




cos20 +sin20=1

1.0 |
sin 6

cos O



Laws of Sines and Cosines

Law of Sines: :

a b C

sinaa sinf siny C

Law of Cosines:

c’=a’+b*—2abcosy



Determinant and Inverse of 2x2

matrix
A= —51 ﬂ
Det A= | > |=54-(13)=23
nvA = detl(A).ade:%_ﬁ 2
Ade:[‘lL —53]



Vector Dot Vector

a-b= axbx + ayby T azbz



Matrix Dot Matrix
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Translation

Let's say we have a 3D model that has an array of position
vectors describing its shape

We store all position vectors: v, where osnsNumVerts-1

If we want to move the object (translate)
v, = U, + d (relative offset)

[v'X v, v'z]:[vX v, vz]+[dX d, dz]

Ve =V, +d,
r

v, =v,+d,



ldentity matrix and translation

1 0
:[vX v, VZ]O 1
0 O

V, =V, 1+v,0+v,0+cC

v, =V,0+v 1+v,0+0

'
X
'
y
'
4

v, =V,0+Vv 0+v,1+cC




Rotation

Now, let's rotate the object in the xy plane by an
angle 6, as if we were spinning it around the z
axis

Uy = Uy c0s(8) — vy,sin(0)
vy, = Uy sin(0) + v, cos(0)

!

Uy, =V,

Note: a positive rotation will rotate the object
counterclockwise when the rotation axis (z) is
pointing towards the observer



Example

Uy = Uy cos(8) — v,,sin(6) y
vy, =y sin(0) + vy cos(0) t
v, =1,




Rotation

Uy = Uy c0s(0) — vysin(0) + 0v,
vy, = vy sin(0) + vycos(0) + 0v,
v, = 0v, + Ovy, + 1v,

" cos(6)
[ve vy vz]=[Vx Vy Vz].|—sin(0)
0

sinf@ O
cos(8) O
0 1.




1 0 0
R,(0) =|0 cos(8) sin(0)
0 —sin(f) cos(0)

cos(8) 0 —sin(6)
Ry= 0 1 0
sin(@) 0 cos(8) |

" cos(60) sinf O
R,(0) =|—sin(8) cos(8) 0
0 0 1-




Multiple rotations

If we have a vector v, and an x-axis rotation:

vV'=Vv.R (0)

If we then want to rotate it around y-axis:
V'= V"R, (6) v'=Vv. (M,M,M,M,)

V'=V. R, (O)R, (0) V'=v. M

total



Rotation as linear equation

/
vV, =Vv,a,+Vv,b, +V,C, |

, . Vi=va+vb+v,.c
v, =v,a, +v,b, +v,C,
/
Z

Vv, =v.a, +v,b, +v,C,



Rotation and translation as linear

equation

v, =Vv,a,+v.b +v,Cc +d,

v, =va, +vb +v,c +d,

'
X
'
y
'
Z

v, =v,a,+Vv.b, +v,C, +d,

a, b, c, d are all constants (12 in total)



Rotation and Translation in a Matrix

How do we represent rotation and orientation
togetherin a matrix?

v, =v,a,+vb, +v,c +d,

v, =v,a, +vb +v,c +d,

'
X
'
y
'
Z

v, =v,a, +v,b, +v,C, +d,

v, vV, V, 1]=|v, vV, V, 1]

L O O O




Homogeneous Transformations

3x3 rotation matrix and 3xa translation vector
combined in a 4x4 matrix (with [0 0 0 1] at the
right)

3D position vector vis changed to [v, v, v, 1]
The line at the right is not used here but it is
necessary when rendering objects as a 2D
Image



Homogeneous Transformations

First, let's look at how projective geometry
works in 2D, before we move on to 3D.

Imagine a projector that is projecting a 2D image
onto a screen.




Homogeneous Coordinates

What happens when the projector goes closer to

the screen?
What is the role of W?




Homogeneous Coordinates

Applyingitto 3D
When W increases the coordinate scales up and when W decreases it scales
down.

Coordinates are said to be correct in 3D, only when W = 1. (convention)
W < 1 everything would look too big
W > 1 everything would look too small
W = o division by zero error
W < o everything would flip upside down and back-to-front

(15,21,3) => (15/3, 21/3, 3/3) => (5, 7, 1)
1/5 (10, 20, 30, 5) = (2, 4, 6, 1)




Perspective Transformation

Perspective is the phenomenon where an object appears smaller
the further away it is from the camera. (because it is scaled down)

A far-away mountain can appear to be smaller than a cat, if the cat
is close enough to the camera.




Matrices

The right hand column can cause a
projection, which we won't use in character
animation, so we leave it as 0,0,0,1

Some books store their matricesin a
transposed form. This is fine as long as you
rememberthat: (A-B)T=BT-AT



Perspective Transformation

Perspective in 3D graphics is implemented by using a transformation
matrix that changes the W element of each vertex.

Z represent the distance, the larger the Z is, the more it needs to be
scaled down.

W effects the scale and it is related with Z

Perspective projection matrix applied to a homogeneous coordinate

1 0 0 02| |2

0 1 3
0 0 4
0 O 4



Perspective division

After the perspective projection matrix is
applied, each vertex goes under perspective
division.

Converting a homogeneous coordinate back
toW =1.

Y (2,3,4,4) = (0.5,0.75, 1, 1)

After the perspective division, W is discarded.

Correct 3D coordinate that has been scaled
according to a 3D perspective projection



Homogeneous Vectors

Technically, homogeneous vectors are 4D
vectors that get projected into the 3D w=1
space




Homogeneous Vectors

Vectors representing a position in 3D space can just
be written as:

;v ]

Vectors representing direction are written:

[vX v

[vX v, V, O]

The only time the w coordinate will be something
other than o or1is in the projection phase of
rendering, which is not our problem



Matrices

Computer graphics apps commonly use 4x4 homogeneous
matrices
A rigid 4x4 matrix transformation looks like this:

b
a, a, a 0 'y C/<
BB, b0 a
e, ¢, ¢, O .
d, d, d, 1 VA

Where a, b, & c are orthogonal unit length vectors
representing orientation, and d is a vector representing
position



Object Space

The space that an object is defined in is called object
space or local space

The object is located at or near the origin and is aligned
with the xyz axes

The units in this space can be whatever we choose (i.e.
meters, etc)

A 3D object would be stored on disk and in memory in this
coordinate system

When we draw the object, we want to transform it into
another space



World Space

We will define a new space called world space or global space

This space represents a 3D world or scene and may contain several
objects in various locations

Every object in the world needs a matrix that transforms its
vertices from its own object space into the world space

We call this object’s world matrix

For example, if we have 100 chairs in a room, we only need to
store the object space data for one chair once.

We can use 100 different matrices to transform the chair model
into 100 locations in the world.



Meaning of abcd

The g constants make up 3 vectors a, band ¢

If we think of the matrix as a transformation
from object to world space

the a vector is essentially the object’s x-axis
rotated in world space

b is its y-axis in world space
and cis its z-axis in world space.

d is the position in world space



Identity

100 0
|01 00
0 0 1 0
000 1

Take one more look at the identity matrix
Its a axis lines up with x, b lines up with y, and ¢ lines up with z
Position d is at the origin

Therefore, it represents a transformation with no rotation or
translation



Rotation

10 0 10 0 0]
R,(0) =|0 cos(8) sin(0) R (6) = 0 cos(@) sin(@) O
0 —sin(@) cos(0) 710 —sin(@) cos(@) 0
0 0 0 1
(cos(d) 0 —sin(@) O]
cos(f) 0 —sin(6)] 0 1 0 0
Ry(6)={ 0 1 0 R, (6)= sin(@) 0 cos(@) O
sin(8) 0 cos(0)
) ] 0 0 0 1
) 00 - cos(@) sin(@) 0 O]
COS sin .
R,(6) = |—sin(@) cos(8) 0 R (6) = —sin(g) cos(9) 0 0
0 0 1 0 0 1 O
0 0 0 1




Rotation and translation

For example, a translation by vectorr
followed by a z-axis rotation is:

v. | [cos(@ sin@ 0 0][1 0 0 r v,
v, _ —sin(@) cos(@) 0 0||0 1 O r,|v,
v, 0 0 1 0|0 0 1 r|v,
1] | O 0 0 1/l0 0 0 11




Rigid Matrices

If the upper 3x3 portion is orthonormal, we
say that 4x4 matrix s rigid
only translated and rotated (it will not have any
scale or shears which distort the object)



Orthonormality

If all row vectors and all column vectors of a
matrix are unit length, that matrix is said to
be orthonormal

This also implies that all vectors are
perpendicular to each other

Orthonormal matrices have some useful
mathematical properties, such as:

M= MT



Orthonormality

If a 4x4 matrix represents a rigid
transformation, then the upper 3x3 portion
will be orthonormal

a|=[b|=[c =1
a=Dbxc
b=cxa

c=axb



Determinants

The determinant is a scalar value that represents
the volume change that the transformation will
cause

An orthonormal matrix will have a determinant of 1,
but non-orthonormal volume preserving matrices
will have a determinant of 1 also

A degenerate matrix has a determinant of o

A matrix that has been mirrored will have a negative
determinant



Position Vector Dot Matrix

L O O O

v, =v,a,+v,b, +v,Cc +d, ’

Vi=va+vb+v,c+d
v, =v,a, +v.b +v,c +d,
v, =v,a,+v,b, +v,Cc, +d,

=1

'
X
'
y
'
Z
'
W

V



Position Vector Dot Matrix

V'=v,a+v,b+v,c+d

v=(.5,.5,0,1)

_____

- —— =9 X

Local Space



Position Vector Dot Matrix

v=(.5,.5,0,1)

_____

_____> X :— ________ _> X

Local Space World Space



Position Vector Dot Matrix

v=(.5,.5,0,1)

_____

_____> X :— ________ _> X

Local Space World Space



Direction Vector Dot Matrix

/

Vv, =Vv,a,+Vv,b, +V,C,

,=Vv,a, +v.b +v.c, V' =v,a+v,b+v,c
, =Vv.a,+v.b, +v,.C,

/

W:O



Matrix Dot Matrix (4x4)

M'=M-N M =

ay
. Db,
Cy
d y

The row vectors of M’ are the row vectors of M transformed
by matrix N

Notice that a, b, and c transform as direction vectors and d
transforms as a position



Matrix Dot Matrix

3

by b b |=| My My, My e

oy b [My My, Mg | N

|, =m,n, +m,n,, +m;,n,,

M

a,, N
b, N
C., N

a,
b,
CL

M
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