Lecture 1 Supplementary Material: Linear Algebra
Computer Animation

Vector Arithmetic

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
b_{x} & b_{y} & b_{z}
\end{array}\right] \\
& \mathbf{a}+\mathbf{b}=\left[\begin{array}{lll}
a_{x}+b_{x} & a_{y}+b_{y} & a_{z}+b_{z}
\end{array}\right] \\
& \mathbf{a}-\mathbf{b}=\left[\begin{array}{lll}
a_{x}-b_{x} & a_{y}-b_{y} & a_{z}-b_{z}
\end{array}\right] \\
& -\mathbf{a}=\left[\begin{array}{lll}
-a_{x} & -a_{y} & -a_{z}
\end{array}\right] \\
& s \mathbf{a}=\left[\begin{array}{lll}
s a_{x} & s a_{y} & s a_{z}
\end{array}\right]
\end{aligned}
$$

Vector Magnitude

- The magnitude (length) of a vector is:

$$
|\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
$$

- Unit vector (magnitude=1.0)

$$
\frac{\mathbf{v}}{|\mathbf{v}|}
$$

Dot Product

$\mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=\sum a_{i} b_{i}$
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$

Example: Angle Between Vectors

- How do you find the angle θ between vectors \mathbf{a} and \mathbf{b} ?

Example: Angle Between Vectors

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$
$\cos \theta=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)$
$\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)$

Dot Products with Unit Vectors

Dot Products with Non-Unit Vectors

- If \mathbf{a} and \mathbf{b} are arbitrary (non-unit) vectors, then the following are still true:
- If $\theta<90^{\circ}$ then $\mathbf{a \cdot b}>0$
- If $\theta=90^{\circ}$ then $\mathbf{a} \cdot \mathbf{b}=0$
- If $\theta>90^{\circ}$ then $\mathbf{a} \cdot \mathbf{b}<0$

Dot Products with One Unit Vector

- If $|\mathbf{U}|=1.0$ then $\mathbf{a} \cdot \mathbf{v}$ is the length of the projection of \mathbf{a} onto \mathbf{u}

Cross Product

$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$
$\mathbf{a} \times \mathbf{b}=\left[\begin{array}{lll}a_{y} b_{z}-a_{z} b_{y} & a_{z} b_{x}-a_{x} b_{z} & a_{x} b_{y}-a_{y} b_{x}\end{array}\right]$

Properties of the Cross Product

$|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$
$|\mathbf{a} \times \mathbf{b}|=$ area of parallelogram $\mathbf{a b}$
$|\mathbf{a} \times \mathbf{b}|=0$ if \mathbf{a} and \mathbf{b} are parallel
$\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b}, in the direction defined by the right hand rule

Right and left handed coordinate system

Left hand

Right hand

Dot vs Cross product

- Dot product produces a scalar
- Cross product of two vectors is a vector
- Dot product applies to \mathbf{n} dimensional vectors
- Cross product applies to 3 dimensional vectors
- Intuition:
- Dot product shows how much part of the vector a is in the same direction as vector \mathbf{b}
- Cross product is how much part of the vector a is perpendicular to the vector \mathbf{b}

Example: Area of a Triangle

- Find the area of the triangle defined by 3 D points \mathbf{a}, \mathbf{b}, and \mathbf{c}

Example: Area of a Triangle

$$
\text { area }=\frac{1}{2}|(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})|
$$

Example: Alignment to Target

- An object is at position \mathbf{p} with a unit length heading of h. We want to rotate it so that the heading is facing some target t. Find a unit axis a and an angle θ to rotate around.
$\cdot t$

Example: Alignment to Target

$$
\mathbf{a}=\frac{\mathbf{h} \times(\mathbf{t}-\mathbf{p})}{|\mathbf{h} \times(\mathbf{t}-\mathbf{p})|}
$$

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{h} \cdot(\mathbf{t}-\mathbf{p})}{|(\mathbf{t}-\mathbf{p})|}\right)
$$

Trigonometry

$\cos ^{2} \theta+\sin ^{2} \theta=1$

Laws of Sines and Cosines

Law of Sines:
$\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
Law of Cosines:
$c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$

Determinant and Inverse of 2x2 matrix

$A=\left[\begin{array}{cc}5 & 3 \\ -1 & 4\end{array}\right]$
Det $A=\left|\begin{array}{cc}5 & 3 \\ -1 & 4\end{array}\right|=5 \cdot 4-(-1.3)=23$
$-\operatorname{Inv} A=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{adj} \mathrm{A}=\frac{1}{23} \cdot\left[\begin{array}{cc}4 & -3 \\ 1 & 5\end{array}\right]$

- $\operatorname{Adj} \mathrm{A}=\left[\begin{array}{cc}4 & -3 \\ 1 & 5\end{array}\right]$

Vector Dot Vector

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
b_{x} & b_{y} & b_{z}
\end{array}\right] \\
& \mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
$$

Matrix Dot Matrix

$\mathbf{L}=\mathbf{M} \cdot \mathbf{N}$

$\left[\begin{array}{lll}l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33}\end{array}\right]=\left[\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right] \cdot\left[\begin{array}{lll}n_{11} & h_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & l_{32} & n_{33}\end{array}\right]$

$$
l_{12}=m_{11} n_{12}+m_{12} n_{22}+m_{13} n_{32}
$$

Translation

- Let's say we have a 3D model that has an array of position vectors describing its shape
- We store all position vectors: v_{n} where $0 \leq n \leq N u m V e r t s-1$
- If we want to move the object (translate)
- $v_{n}^{\prime}=v_{n}+d$ (relative offset)

$$
\left[\begin{array}{lll}
v_{x}^{\prime} & v_{y}^{\prime} & v_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right]+\left[\begin{array}{lll}
d_{x} & d_{y} & d_{z}
\end{array}\right]
$$

- $v_{x}^{\prime}=v_{x}+d_{x}$
- $v_{y}^{\prime}=v_{y}+d_{y}$
- $v_{z}^{\prime}=v_{z}+d_{z}$

Identity matrix and translation

$$
\begin{gathered}
{\left[\begin{array}{lll}
v_{x}^{\prime} & v_{y}^{\prime} & v_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
d_{x} & d_{y} & d_{z}
\end{array}\right]} \\
v_{x}^{\prime}=v_{x} 1+v_{y} 0+v_{z} 0+d_{x} \\
v_{y}^{\prime}
\end{gathered}=v_{x} 0+v_{y} 1+v_{z} 0+d_{y} .
$$

Rotation

- Now, let's rotate the object in the xy plane by an angle θ, as if we were spinning it around the z axis
- $v_{x}^{\prime}=v_{x} \cos (\theta)-v_{y} \sin (\theta)$
- $v_{y}^{\prime}=v_{x} \sin (\theta)+v_{y} \cos (\theta)$
- $v_{z}^{\prime}=v_{z}$
- Note: a positive rotation will rotate the object counterclockwise when the rotation axis (z) is pointing towards the observer

Example

$$
\begin{gathered}
v_{x}^{\prime}=v_{x} \cos (\theta)-v_{y} \sin (\theta) \\
v_{y}^{\prime}=v_{x} \sin (\theta)+v_{y} \cos (\theta) \\
v_{z}^{\prime}=v_{z}
\end{gathered}
$$

Rotation

$$
\begin{aligned}
& v_{x}^{\prime}=v_{x} \cos (\theta)-v_{y} \sin (\theta)+0 v_{z} \\
& v_{y}^{\prime}=v_{x} \sin (\theta)+v_{y} \cos (\theta)+0 v_{z} \\
& v_{z}^{\prime}=0 v_{x}+0 v_{y}+1 v_{z}
\end{aligned}
$$

$\left[\begin{array}{lll}v_{x}^{\prime} & v_{y}^{\prime} & v_{z}^{\prime}\end{array}\right]=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right] \cdot\left[\begin{array}{ccc}\cos (\theta) & \sin \theta & 0 \\ -\sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
$v^{\prime}=v . M$

Rotation

- $R_{x}(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & \sin (\theta) \\ 0 & -\sin (\theta) & \cos (\theta)\end{array}\right]$
- $R_{y}(\theta)=\left[\begin{array}{ccc}\cos (\theta) & 0 & -\sin (\theta) \\ 0 & 1 & 0 \\ \sin (\theta) & 0 & \cos (\theta)\end{array}\right]$
- $R_{z}(\theta)=\left[\begin{array}{ccc}\cos (\theta) & \sin \theta & 0 \\ -\sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$

Multiple rotations

- If we have a vector v, and an x-axis rotation:

$$
\mathbf{v}^{\prime}=v . R_{x}(\theta)
$$

- If we then want to rotate it around y-axis:

$$
\begin{array}{cc}
\mathbf{v}^{\prime \prime}=\mathbf{v}^{\prime} \cdot R_{y}(\theta) & \mathbf{v}^{\prime \prime}=\mathbf{v} \cdot\left(M_{1} M_{2} M_{3} M_{4}\right) \\
\mathbf{v}^{\prime \prime}=\mathbf{v} \cdot R_{x}(\theta) R_{y}(\theta) & \mathbf{v}^{\prime \prime}=\mathbf{v} \cdot M_{\text {total }}
\end{array}
$$

Rotation as linear equation

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right] \\
& \mathbf{v}^{\prime}=\mathbf{v} \cdot \mathbf{M} \\
& v_{x}^{\prime}=v_{x} a_{x}+v_{y} b_{x}+v_{z} c_{x} \\
& v_{y}^{\prime}=v_{x} a_{y}+v_{y} b_{y}+v_{z} c_{y} \\
& v_{z}^{\prime}=v_{x} a_{z}+v_{y} b_{z}+v_{z} c_{z}
\end{aligned}
$$

Rotation and translation as linear

 equation$$
\begin{aligned}
& v_{x}^{\prime}=v_{x} a_{x}+v_{y} b_{x}+v_{z} c_{x}+d_{x} \\
& v_{y}^{\prime}=v_{x} a_{y}+v_{y} b_{y}+v_{z} c_{y}+d_{y} \\
& v_{z}^{\prime}=v_{x} a_{z}+v_{y} b_{z}+v_{z} c_{z}+d_{z}
\end{aligned}
$$

a, b, c, d are all constants (12 in total)

Rotation and Translation in a Matrix

- How do we represent rotation and orientation together in a matrix?

$$
\begin{aligned}
& v_{x}^{\prime}=v_{x} a_{x}+v_{y} b_{x}+v_{z} c_{x}+d_{x} \\
& v_{y}^{\prime}=v_{x} a_{y}+v_{y} b_{y}+v_{z} c_{y}+d_{y} \\
& v_{z}^{\prime}=v_{x} a_{z}+v_{y} b_{z}+v_{z} c_{z}+d_{z} \\
& {\left[\begin{array}{llll}
v_{x}^{\prime} & v_{y}^{\prime} & v_{z}^{\prime} & 1
\end{array}\right]=\left[\begin{array}{llll}
v_{x} & v_{y} & v_{z} & 1
\end{array}\right]\left[\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 0 \\
b_{x} & b_{y} & b_{z} & 0 \\
c_{x} & c_{y} & c_{z} & 0 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right]}
\end{aligned}
$$

Homogeneous Transformations

- 3×3 rotation matrix and 3×1 translation vector combined in a 4×4 matrix (with [0001 1] at the right)
- 3D position vector v is changed to $\left[v_{x} v_{y} v_{z} 1\right]$
- The line at the right is not used here but it is necessary when rendering objects as a 2D image

Homogeneous Transformations

- First, let's look at how projective geometry works in 2D, before we move on to 3D.
- Imagine a projector that is projecting a 2D image onto a screen.

Homogeneous Coordinates

- What happens when the projector goes closer to the screen?
- What is the role of W ?

Homogeneous Coordinates

- Applying it to 3D
- When W increases the coordinate scales up and when W decreases it scales down.
- Coordinates are said to be correct in 3D, only when $W=1$. (convention)
- W < 1 everything would look too big
- W>1 everything would look too small
- $\mathrm{W}=\mathrm{o}$ division by zero error
- W < o everything would flip upside down and back-to-front
- $(15,21,3)=>(15 / 3,21 / 3,3 / 3)=>(5,7,1)$
- $1 / 5(10,20,30,5)=(2,4,6,1)$

Perspective Transformation

- Perspective is the phenomenon where an object appears smaller the further away it is from the camera. (because it is scaled down)
- A far-away mountain can appear to be smaller than a cat, if the cat is close enough to the camera.

Matrices

- The right hand column can cause a projection, which we won't use in character animation, so we leave it as $0,0,0,1$
- Some books store their matrices in a transposed form. This is fine as long as you remember that: $\quad(A \cdot B)^{\top}=B^{\top} \cdot A^{\top}$

Perspective Transformation

- Perspective in 3D graphics is implemented by using a transformation matrix that changes the W element of each vertex.
- Z represent the distance, the larger the Z is, the more it needs to be scaled down.
- W effects the scale and it is related with Z
- Perspective projection matrix applied to a homogeneous coordinate

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4 \\
4
\end{array}\right]
$$

Perspective division

- After the perspective projection matrix is applied, each vertex goes under perspective division.
- Converting a homogeneous coordinate back to $W=1$.
- $1 / 4(2,3,4,4)=(0.5,0.75,1,1)$
- After the perspective division, W is discarded.
- Correct 3D coordinate that has been scaled according to a 3D perspective projection

Homogeneous Vectors

Technically, homogeneous vectors are 4 D vectors that get projected into the 3D $\mathrm{w}=1$ space

$$
\left[\begin{array}{llll}
v_{x} & v_{y} & v_{z} & v_{w}
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
\frac{v_{x}}{v_{w}} & \frac{v_{y}}{v_{w}} & \frac{v_{z}}{v_{w}}
\end{array}\right]
$$

Homogeneous Vectors

- Vectors representing a position in 3D space can just be written as:

$$
\left[\begin{array}{llll}
v_{x} & v_{y} & v_{z} & 1
\end{array}\right]
$$

- Vectors representing direction are written:

$$
\left[\begin{array}{llll}
v_{x} & v_{y} & v_{z} & 0
\end{array}\right]
$$

- The only time the w coordinate will be something other than o or 1 is in the projection phase of rendering, which is not our problem

Matrices

- Computer graphics apps commonly use 4×4 homogeneous matrices
- A rigid 4×4 matrix transformation looks like this:

$$
\mathbf{M}=\left[\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 0 \\
b_{x} & b_{y} & b_{z} & 0 \\
c_{x} & c_{y} & c_{z} & 0 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right] \quad \text { y }
$$

- Where a, b, \& c are orthogonal unit length vectors representing orientation, and \mathbf{d} is a vector representing position

Object Space

- The space that an object is defined in is called object space or local space
- The object is located at or near the origin and is aligned with the xyz axes
- The units in this space can be whatever we choose (i.e. meters, etc)
- A 3D object would be stored on disk and in memory in this coordinate system
- When we draw the object, we want to transform it into another space

World Space

- We will define a new space called world space or global space
- This space represents a 3D world or scene and may contain several objects in various locations
- Every object in the world needs a matrix that transforms its vertices from its own object space into the world space
- We call this object's world matrix
- For example, if we have 100 chairs in a room, we only need to store the object space data for one chair once.
- We can use 100 different matrices to transform the chair model into 100 locations in the world.

Meaning of abcd

- The 9 constants make up 3 vectors a, b and c
- If we think of the matrix as a transformation from object to world space
" the a vector is essentially the object's x-axis rotated in world space
- b is its y-axis in world space
- and cis its z -axis in world space.
- d is the position in world space

Identity

$$
\mathbf{I}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Take one more look at the identity matrix
- Its a axis lines up with x, \mathbf{b} lines up with y, and \mathbf{c} lines up with z
- Position d is at the origin
- Therefore, it represents a transformation with no rotation or translation

Rotation

$\begin{array}{lll}-R_{x}(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & \sin (\theta) \\ 0 & -\sin (\theta) & \cos (\theta)\end{array}\right] & R_{x}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\theta) & \sin (\theta) & 0 \\ 0 & -\sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \\ =R_{y}(\theta)=\left[\begin{array}{ccc}\cos (\theta) & 0 & -\sin (\theta) \\ 0 & 1 & 0 \\ \sin (\theta) & 0 & \cos (\theta)\end{array}\right] & R_{y}(\theta)=\left[\begin{array}{cccc}\cos (\theta) & 0 & -\sin (\theta) & 0 \\ 0 & 1 & 0 & 0 \\ \sin (\theta) & 0 & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \\ =R_{z}(\theta)=\left[\begin{array}{ccc}\cos (\theta) & \sin \theta & 0 \\ -\sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right] & R_{z}(\theta)=\left[\begin{array}{cccc}\cos (\theta) & \sin (\theta) & 0 & 0 \\ -\sin (\theta) & \cos (\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\end{array}$

Rotation and translation

- For example, a translation by vector r followed by a z-axis rotation is:

$$
\left[\begin{array}{c}
v_{x}^{\prime} \\
v_{y}^{\prime} \\
v_{z}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos (\theta) & \sin (\theta) & 0 & 0 \\
-\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
1 & 0 & 0 & r_{x} \\
0 & 1 & 0 & r_{y} \\
0 & 0 & 1 & r_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
1
\end{array}\right]
$$

Rigid Matrices

- If the upper 3×3 portion is orthonormal, we say that 4×4 matrix is rigid
- only translated and rotated (it will not have any scale or shears which distort the object)

Orthonormality

- If all row vectors and all column vectors of a matrix are unit length, that matrix is said to be orthonormal
- This also implies that all vectors are perpendicular to each other
- Orthonormal matrices have some useful mathematical properties, such as:
- $M^{-1}=M^{\top}$

Orthonormality

- If a 4×4 matrix represents a rigid transformation, then the upper 3×3 portion will be orthonormal

$$
\begin{aligned}
& |\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=1 \\
& \mathbf{a}=\mathbf{b} \times \mathbf{c} \\
& \mathbf{b}=\mathbf{c} \times \mathbf{a} \\
& \mathbf{c}=\mathbf{a} \times \mathbf{b}
\end{aligned}
$$

Determinants

- The determinant is a scalar value that represents the volume change that the transformation will cause
- An orthonormal matrix will have a determinant of 1 , but non-orthonormal volume preserving matrices will have a determinant of 1 also
- A degenerate matrix has a determinant of o
- A matrix that has been mirrored will have a negative determinant

Position Vector Dot Matrix

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{llll}
v_{x} & v_{y} & v_{z} & 1
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 0 \\
b_{x} & b_{y} & b_{z} & 0 \\
c_{x} & c_{y} & c_{z} & 0 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right] \\
& \mathbf{v}^{\prime}=\mathbf{v} \cdot \mathbf{M} \\
& v_{x}^{\prime}=v_{x} a_{x}+v_{y} b_{x}+v_{z} c_{x}+d_{x} \\
& v_{y}^{\prime}=v_{x} a_{y}+v_{y} b_{y}+v_{z} c_{y}+d_{y} \\
& v_{z}^{\prime}=v_{x} a_{z}+v_{y} b_{z}+v_{z} c_{z}+v_{z} \mathbf{a}+v_{y} \mathbf{b} \\
& v_{w}^{\prime}=1
\end{aligned}
$$

Position Vector Dot Matrix

$$
\mathbf{v}^{\prime}=v_{x} \mathbf{a}+v_{y} \mathbf{b}+v_{z} \mathbf{c}+\mathbf{d}
$$

Local Space

Position Vector Dot Matrix

$$
\mathbf{v}^{\prime}=v_{x} \mathbf{a}+v_{y} \mathbf{b}+v_{z} \mathbf{c}+\mathbf{d}
$$

Local Space
World Space

Position Vector Dot Matrix

$$
\mathbf{v}^{\prime}=v_{x} \mathbf{a}+v_{y} \mathbf{b}+v_{z} \mathbf{c}+\mathbf{d}
$$

Local Space
World Space

Direction Vector Dot Matrix

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{llll}
v_{x} & v_{y} & v_{z} & 0
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 0 \\
b_{x} & b_{y} & b_{z} & 0 \\
c_{x} & c_{y} & c_{z} & 0 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right] \\
& \mathbf{v}^{\prime}=\mathbf{v} \cdot \mathbf{M} \\
& v_{x}^{\prime}=v_{x} a_{x}+v_{y} b_{x}+v_{z} c_{x} \\
& v_{y}^{\prime}=v_{x} a_{y}+v_{y} b_{y}+v_{z} c_{y} \quad \mathbf{v}^{\prime}=v_{x} \mathbf{a}+v_{y} \mathbf{b}+v_{z} \mathbf{c} \\
& v_{z}^{\prime}=v_{x} a_{z}+v_{y} b_{z}+v_{z} c_{z} \\
& v_{w}^{\prime}=0
\end{aligned}
$$

Matrix Dot Matrix (4×4)

$$
\mathbf{M}^{\prime}=\mathbf{M} \cdot \mathbf{N} \quad \mathbf{M}=\left[\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 0 \\
b_{x} & b_{y} & b_{z} & 0 \\
c_{x} & c_{y} & c_{z} & 0 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right]
$$

- The row vectors of \mathbf{M}^{\prime} are the row vectors of \mathbf{M} transformed by matrix \mathbf{N}
- Notice that \mathbf{a}, \mathbf{b}, and \mathbf{c} transform as direction vectors and \mathbf{d} transforms as a position

Matrix Dot Matrix

$$
\mathbf{L}=\mathbf{M} \cdot \mathbf{N}
$$

$\left[\begin{array}{lll}l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \\ l_{31} & l_{32} & l_{33}\end{array}\right]=\left[\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right] \cdot\left[\begin{array}{ccc}n_{11} & \eta_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33}\end{array}\right]$
$l_{12}=m_{11} n_{12}+m_{12} n_{22}+m_{13} n_{32}$
$\mathbf{a}_{L}=\mathbf{a}_{M} \cdot \mathbf{N}$
$\mathbf{b}_{L}=\mathbf{b}_{M} \cdot \mathbf{N}$
$\mathbf{c}_{L}=\mathbf{c}_{M} \cdot \mathbf{N}$

Supplementary Material and References

Computer Animation, Rick Parent, Chapter 2 and Appendix

- Khan Academy online courses
- Linear Algebra and Calculus
- https://www.khanacademy.org/
- Some of the slides of this lecture are based on the Computer Animation course at the University

COMPUTER
 ANIMATION
 ALGORITHMS \& TECHNIQUES

 of California San Diego.

