
Lecture 2b: Subdivision representation and map overlay

Computational Geometry

Utrecht University

1



Motivation

2



Motivation

Map overlay

3



Map overlay

Map overlay is the combination of two (or

more) map layers

It is needed to answer questions like:

• What is the total length of roads

through forests?

• What is the total area of corn fields

within 1km from a river?

• What area of all lakes occurs at the

geological soil type “rock”?

4



Map overlay

To solve map overlay questions, we need

(at the least) intersection points from two

sets of line segments (possibly,

boundaries of regions)

5



Map overlay

To solve map overlay questions,

we also need to be able to

represent subdivisions

clay
clay sand

sand
loess

rockrock

sand

sand

loess

clay

rock rock

clay

6



Doubly-connected edge list

7



Doubly-connected edge list

Subdivisions

8



Subdivisions

A planar subdivision is a structure induced by a set of line segments in

the plane that can only intersect at common endpoints. It consists of

vertices, edges, and faces

face

vertex

edge

9



Subdivisions

Vertices are the endpoints of the line segments

Edges are the interiors of the line segments

Faces are the interiors of connected two-dimensional

regions that do not contain any point of any line

segment

Objects of the same dimensionality are adjacent or not;

objects of different dimensionality are incident or not

adjacent

incident

10



Subdivisions

Exactly one face is unbounded, the outer face

Every other face is bounded and has an outer boundary

consisting of vertices and edges

Any face has zero or more inner boundaries

11



Subdivisions

Vertices, edges, and faces form a partition of the plane

If a planar subdivision is induced by n line segments, it

has exactly n edges, and at most 2n vertices

12



Subdivisions

And how many faces?

Observe: Every face is bounded by at least 3 edges, and

every edge bounds at most 2 faces⇒
F ≤ 2E/3 = 2n/3 = O(n)

13



Euler’s formula

Euler’s formula for planar graphs: If S is a planar subdivision withV
vertices, E edges, and F faces, thenV −E +F ≥ 2, with equality iff

the vertices and edges of S form a connected set

V = 9, E = 10, F = 4 V = 11, E = 13, F = 4

V − E + F = 3 V − E + F = 2

14



Doubly-connected edge list

Representing subdivisions

15



Representing subdivisions

A subdivision representation has a

vertex-object class, an edge-object class,

and a face-object class

It is a pointer structure where objects can

reach incident (or adjacent) objects easily

16



Representing subdivisions

Use the edge as the central object

For any edge, exactly two vertices are

incident, exactly two faces are incident,

and zero or more other edges are

adjacent

f1
f2

v1

v2

17



Representing subdivisions

Use the edge as the central object, and

give it a direction

Now we can speak of Origin, Destination,

Left Face, and Right Face

fleft

vorigin

fright

vdestination

18



Representing subdivisions

Four edges are of special

interest
fleft

fright

for fright

for fright
for fleft

for fleft

next edge
next edge

previous edge
previous edge

19



Representing subdivisions

It would be nice if we could traverse a

boundary cycle by continuously following

the next edge for fleft or fright

. . . but, no consistent edge orientation

needs to exist

20



Representing subdivisions

We apply a trick/hack/impossibility: split

every edge length-wise(!) into two

half-edges

Every half-edge:

• has exactly one half-edge as its Twin

• is directed opposite to its Twin

• is incident to only one face (left)

e⃗ Twin(e⃗)

Next(e⃗)

Prev(e⃗)

21



Doubly-connected edge list

DCEL structure

22



The doubly-connected edge list

The doubly-connected edge list is a

subdivision representation

structure with an object for every

vertex, every half-edge, and every

face

A vertex object stores:

• Coordinates

• IncidentEdge (some

half-edge leaving it)

A half-edge object stores:

• Origin (vertex)

• Twin (half-edge)

• IncidentFace (face)

• Next (half-edge in cycle of

the incident face)

• Prev (half-edge in cycle of the

incident face)

23



The doubly-connected edge list

A face object stores:

• OuterComponent (half-edge

of outer cycle)

• InnerComponents (list of

half-edges for the inner

cycles bounding the face)

f

24



The doubly-connected edge list

Question: A half-edge e⃗ can directly

access its Origin, and get the coordinates

of one endpoint. How can it get the

coordinates of its other endpoint?

Question: For a vertex v, how do we find

all adjacent vertices?
v

e⃗ Twin(e⃗)

Next(e⃗)

Prev(e⃗) Origin(e⃗)

25



The doubly-connected edge list

A vertex object stores:

• Coordinates

• IncidentEdge

• Any attributes, mark bits

A face object stores:

• OuterComponent (half-edge

of outer cycle)

• InnerComponents

(half-edges for the inner

cycles)

• Any attributes, mark bits

A half-edge object stores:

• Origin (vertex)

• Twin (half-edge)

• IncidentFace (face)

• Next (half-edge in cycle of

the incident face)

• Prev (half-edge in cycle of the

incident face)

• Any attributes, mark bits

26



The doubly-connected edge list

Question: For a face f , how do we find all adjacent face names,

assuming they are stored in an attribute? Write the code using the

proper names like Next, OuterComponent, etc.

27



Map overlay

28



Map overlay

Initialization

29



Map overlay problem

The map overlay problem for two subdivisions

S1 and S2 is to compute a subdivision S that is

the overlay of S1 and S2

All edges of S are (parts of) edges from S1 and

S2. All vertices of S are also in S1 or S2, or

intersections of edges from S1 and S2

30



Map overlay

We start by making a copy of S1 and of S2 whose

vertex and half-edge objects we will re-use

At first we do not compute face object

information in the overlay

The output should be a doubly-connected edge

list (DCEL) of the overlay

31



Map overlay

Approach: plane sweep

Need to define status, events, event handling

Need status structure, event list, and DCEL for

the output

32



Map overlay

Overlay algorithm

33



Map overlay

Status: the edges of S1 and S2 intersecting the

sweep line in the left-to-right order

Events happen:

• At the vertices of S1 and S2

• At intersection points from S1 and S2

The event list is basically the same as for line

segment intersection

34



Overlay events

Six types of events:

• A vertex of S1

• A vertex of S2

• An intersection point of one edge from S1

and one edge from S2

• An edge of S1 goes through a vertex of S2

• An edge of S2 goes through a vertex of S1

• A vertex of S1 and a vertex of S2 coincide

35



Overlay events

Consider the event:

an intersection point of one edge from S1 and one edge from S2

geometry DCELs before DCEL after

36



Overlay events

Consider the event:

an edge from S1 goes through a vertex of S2

geometry DCELs before DCEL after

37



Overlay events

Consider the event:

a vertex of S1 and a vertex of S2 coincide

geometry DCELs before DCEL after

38



Overlay events

When we take an event from the event queue Q, we need quick

access to the DCEL to make the necessary changes

We keep a pointer from each leaf in the status structure to one of the

representing half-edges in the DCEL

39



Overlay events

When we take an event from the event queue Q, we need quick

access to the DCEL to make the necessary changes

We keep a pointer from each leaf in the status structure to one of the

representing half-edges in the DCEL

40



Overlay so far

The sweep algorithm gives us all vertices and half-edges of the

overlay, and pointers between these objects

Next we need face objects and their connection into the

doubly-connected edge list structure

Question: Which variables of vertex, edge, and face objects do we

still have to set?

41



42



43



C1

C2

C3
C4C5

C6

C7

C8

C9

C10C11

C12

44



Face information

• Determine all cycles of half-edges, and whether they are inner or

outer boundaries of the incident face

• Make a face object for each outer boundary, plus one for the

unbounded face, and set the OuterComponent variable of each

face. Set the IncidentFace variable for every half-edge in an

outer boundary cycle

45



C1

C2

C3
C4C5

C6

C7

C8

C9

C10C11

C12

46



C1

C2

C3
C4C5

C6

C7

C8

C9

C10C11

C12

C6 → C2

C2 → C5

C1 →
C3 →

C10 → C1

C7 → C9

47



C1

C2

C3
C4C5

C6

C7

C8

C9

C10C11

C12

C6 → C2

C2 → C5

C1 →
C3 →

C10 → C1

C7 → C9

f5

f5: outer e5; inner e2, e6

e5

e2

e6

48



Face information

• Determine the leftmost vertex of each inner boundary cycle

• For all of these leftmost vertices, determine the edge

horizontally left of it, take the downward half-edge of it, and its

cycle (by plane sweep) to set InnerComponents for all faces

and IncidentFace for half-edges in inner boundary cycles

49



Efficiency

Every event takes O(logn) or O(m+ logn) time to handle, where m
is the sum of the degrees of any vertex from S1 and/or S2 involved

The sum of the degrees of all vertices is exactly twice the number of

edges in the output

Theorem: Given two planar subdivisions S1 and S2, their overlay can

be computed in O(n logn+ k logn) time, where k is the number of

vertices of the overlay

50



Map overlay

Boolean operations, placement space

51



Boolean operations on polygons

Boolean operations on two polygons with n
vertices take O(n logn+ k logn) time, where k
is the number of intersection points

intersection

symmetric difference

union

difference or

52



Placement space of a square

Given a set of n points in the plane, and a side length s, compute an

axis-parallel placement of a square S with side length s such that it

contains the maximum number of points.

s

S

53



Placement space of a square

Given a set of n points in the plane, and a side length s, compute an

axis-parallel placement of a square S with side length s such that it

contains the maximum number of points.

s

S

54



Placement space of a square

The parts of a subdivision intersecting a fixed-size square when that

square can be placed anywhere is the overlay of four copies of the

subdivision and n copies of the square

55



Placement space of a square

The parts of a subdivision intersecting a fixed-size square when that

square can be placed anywhere is the overlay of four copies of the

subdivision and n copies of the square

56



Placement space of a square

The parts of a subdivision intersecting a fixed-size square when that

square can be placed anywhere is the overlay of four copies of the

subdivision and n copies of the square

57



Placement space of a square

The parts of a subdivision intersecting a fixed-size square when that

square can be placed anywhere is the overlay of four copies of the

subdivision and n copies of the square

58



59



60



Summary

Computing the overlay of two subdivisions, or the placement space of

a shape, is a basic operation needed in GIS

To represent a planar subdivision, a doubly-connected edge list is a

convenient data structure

To design efficient geometric algorithms, the plane sweep technique

is often a good choice

61


	Motivation
	Map overlay

	Doubly-connected edge list
	Subdivisions
	Representing subdivisions
	DCEL structure

	Map overlay
	Initialization
	Overlay algorithm
	Boolean operations, placement space


