
Lecture 2: Line segment intersection for map overlay

Computational Geometry

Utrecht University

1

Motivation

2

Motivation

Map overlay

3

Map layers

In a geographic information system (GIS)

data is stored in separate layers

A layer stores the geometric information

about some theme, like land cover, road

network, municipality boundaries, red fox

habitat, . . .

4

Map overlay

Map overlay is the combination of two (or

more) map layers

It is needed to answer questions like:

• What is the total length of roads

through forests?

• What is the total area of corn fields

within 1km from a river?

• What area of all lakes occurs at the

geological soil type “rock”?

5

Map overlay

To solve map overlay questions, we need

(at the least) intersection points from two

sets of line segments (possibly,

boundaries of regions)

6

Line segment intersection

7

Line segment intersection

Problem

8

The (easy) problem

Let’s first look at the easiest version of the

problem:

Given a set of of n line segments in the

plane, find all intersection points

efficiently

9

An easy, optimal algorithm?

Algorithm FindIntersections(S)
Input. A set S of line segments in the plane.

Output. The set of intersection points among the segments in S.
1. for each pair of line segments ei,e j ∈ S
2. do if ei and e j intersect

3. then report their intersection point

Question: Why can we say that this algorithm is optimal?

10

11

Line segment intersection

Output-sensitive algorithms

12

Output-sensitive algorithm

The asymptotic running time of an

algorithm is always input-sensitive

(depends on n)

We may also want the running time to be

output-sensitive: if the output is large, it

is fine to spend a lot of time, but if the

output is small, we want a fast algorithm

13

Intersection points in practice

Question: How many intersection points

do we typically expect in our application?

If this number is k, and if k = O(n), it
would be nice if the algorithm runs in

O(n logn) time

14

Line segment intersection

Some attempts

15

First attempt

Observation: Two line segments can only

intersect if their y-spans have an overlap

So, how about only testing pairs of line

segments that intersect in the y-projection?

1D problem: Given a set of intervals on the

real line, find all partly overlapping pairs

x

y

s1 s2s3 s4 s5 s6

(s1, s2), (s4, s6), (s5, s6)

16

First attempt

1D problem: Given a set of intervals on the real line, find all partly

overlapping pairs

Sort the endpoints and handle them from left to right; maintain currently

intersected intervals in a balanced search tree T

• Left endpoint of si: for each s j in T, report the pair si,s j . Then insert si

in T

• Right endpoint of si: delete si from T

Question: Is this algorithm output-sensitive for 1D interval intersection?

17

First attempt

Back to the 2D problem:

Determine the y-intervals of the 2D line segments

Find the intersecting pairs of intervals with the 1D solution

For every pair of intersecting intervals, test whether the corresponding line

segments intersect, and if so, report

Question: Is this algorithm output-sensitive for 2D line segment

intersection?

18

Second attempt

Refined observation: Two line segments

can only intersect if their y-spans have an

overlap, and they are adjacent in the

x-order at that y-coordinate (they are

horizontal neighbors)

19

Plane sweep

20

Plane sweep

Introduction

21

Plane sweep

The plane sweep technique: Imagine a horizontal line passing over

the plane from top to bottom, solving the problem as it moves

• The sweep line stops and the algorithm computes at certain

positions⇒ events

• The algorithm stores the relevant situation at the current

position of the sweep line⇒ status

• The algorithm knows everything it needs to know above the

sweep line, and found all intersection points

22

Sweep

computed

unexplored
23

Sweep and status

computed

unexplored

status

24

Status and events

The status of this particular plane sweep algorithm, at the current

position of the sweep line, is the set of line segments intersecting the

sweep line, ordered from left to right

The events occur when the status changes, and when output is

generated

event≈ interesting y-coordinate

25

s1

s2s3

s4

s6

s5

s7

s8

add s1

26

s1

s2s3

s4

s6

s5

s7

s8

add s2 after s1

27

s1

s2s3

s4

s6

s5

s7

s8

add s3 between s1

and s2

28

s1

s2s3

s4

s6

s5

s7

s8

add s4 before s1

29

s1

s2s3

s4

s6

s5

s7

s8

report intersection

(s1,s3); swap s1 and

s3

30

s1

s2s3

s4

s6

s5

s7

s8

remove s2

31

s1

s2s3

s4

s6

s5

s7

s8

remove s1

32

s1

s2s3

s4

s6

s5

s7

s8

add s5 after s3

33

s1

s2s3

s4

s6

s5

s7

s8

report intersection

(s3,s4); swap s3

and s4

34

. . . and so on . . .

35

Plane sweep

Events, status, structures

36

The events

When do the events happen? When the sweep line is at

• an upper endpoint of a line segment

• a lower endpoint of a line segment

• an intersection point of a line segment

At each type, the status changes; at the third type output is found too

37

Assume no degenerate cases

We will at first exclude degenerate cases:

• No two endpoints have the same

y-coordinate

• No more than two line segments intersect

in a point

• . . .

Question: Are there more degenerate cases?

38

event queue and status structure

The event queue is an abstract data structure that stores all events in

the order in which they occur

The status structure is an abstract data structure that maintains the

current status

Here: The status is the subset of currently intersected line segments in

the order of intersection by the sweep line

39

Status structure

We use a balanced binary search tree with the line segments in the

leaves as the status structure

s1 s2
s3 s4 s5 s6

s7
s8

s1

s2

s3

s4

s5

s6

s7

s1 s2 s3 s4 s5 s6 s7 s8

40

Status structure

s1 s2
s3 s4 s5 s6

s7
s8

s1

s2

s3

s4

s5

s6

s7

s1 s2 s3 s4 s5 s6 s7 s8

s9

Upper endpoint: search, and insert
41

Status structure

s1 s2
s3 s4 s5 s6

s7
s8

s1

s2

s3

s4

s5

s6

s7

s1 s2 s3 s4 s5 s6 s7 s8

s9

Upper endpoint: search, and insert
42

Status structure

s1 s2
s3 s4 s5 s6

s7
s8

s1

s2

s3

s4

s5

s6

s7

s1 s2

s3

s4 s5 s6 s7 s8

s9

s9

s9

Upper endpoint: search, and insert
43

Status structure

Sweep line reaches lower endpoint of a line segment: delete from the

status structure

Sweep line reaches intersection point: swap two leaves in the status

structure (and update information on the search paths)

44

Finding events

Before the sweep algorithm starts, we know all upper endpoint

events and all lower endpoint events

But: How do we know intersection point events???

(those we were trying to find . . .)

Recall: Two line segments can only intersect if they are horizontal

neighbors

45

Finding events

Lemma: Two line segments si and s j can only

intersect after (= below) they have become

horizontal neighbors

Proof: Just imagine that the sweep line is ever so

slightly above the intersection point of si and s j ,

but below any other event □

Also: some earlier (= higher) event made si and

s j horizontally adjacent!!!

si
sj

si
sj

46

event queue

The event queue will be a balanced binary search tree, because

during the sweep, we discover new events that will happen later

We know upper endpoint events and lower endpoint events

beforehand; we find intersection point events when the involved line

segments become horizontal neighbors

47

Structure of sweep algorithm

Algorithm FindIntersections(S)
Input. A set S of line segments in the plane.

Output. The intersection points of the segments in S, with for each

intersection point the segments that contain it.

1. Initialize an empty event queue Q. Insert the segment endpoints

into Q; when an upper endpoint is inserted, the corresponding

segment should be stored with it

2. Initialize an empty status structure T
3. while Q is not empty

4. do Determine next event point p in Q and delete it

5. HandleEventPoint(p)

48

Plane sweep

Event handling

49

Event handling

If the event is an upper endpoint event,

and s is the line segment that starts at p:

1. Search with p in T , and insert s

2. If s intersects its left neighbor in T ,

then determine the intersection point

and insert in Q

3. If s intersects its right neighbor in T ,

then determine the intersection point

and insert in Q

p

s

50

Event handling

If the event is a lower endpoint event, and

s is the line segment that ends at p:

1. Search with p in T , and delete s

2. Let sl and sr be the left and right

neighbors of s in T (before deletion).

If they intersect below the sweep line,

then insert their intersection point

as an event in Q

p

s

51

Event handling

If the event is an intersection point event

where s and s′ intersect at p:

1. . . .

2. . . .

3. . . .

4. . . .

p

s s′

52

Event handling

If the event is an intersection point event

where s and s′ intersect at p:

1. Exchange s and s′ in T

2. . . .

3. . . .

4. . . .

p

s s′

53

Event handling

If the event is an intersection point event

where s and s′ intersect at p:

1. Exchange s and s′ in T

2. If s′ and its new left neighbor in T
intersect below the sweep line, then

insert this intersection point in Q

3. . . .

4. . . .

p

s s′

54

Event handling

If the event is an intersection point event

where s and s′ intersect at p:

1. Exchange s and s′ in T

2. If s′ and its new left neighbor in T
intersect below the sweep line, then

insert this intersection point in Q

3. If s and its new right neighbor in T
intersect below the sweep line, then

insert this intersection point in Q

4. . . .

p

s s′

55

Event handling

If the event is an intersection point event

where s and s′ intersect at p:

1. Exchange s and s′ in T

2. If s′ and its new left neighbor in T
intersect below the sweep line, then

insert this intersection point in Q

3. If s and its new right neighbor in T
intersect below the sweep line, then

insert this intersection point in Q

4. Report the intersection point

p

s s′

56

Event handling

p

s

s′

Can it be that new horizontal

neighbors already intersected

above the sweep line?

Can it be that we insert a newly

detected intersection point

event, but it already occurs

in Q?

57

Plane sweep

Efficiency

58

Efficiency

How much time to handle an event?

At most one search in T and/or one insertion, deletion, or swap

At most twice finding a neighbor in T

At most one deletion from and two insertions in Q

Since T and Q are balanced binary search trees, handling an event

takes only O(logn) time

59

Efficiency

How many events?

• 2n for the upper and lower endpoints

• k for the intersection points, if there are k of them

In total: O(n+ k) events

60

Efficiency

Initialization takes O(n logn) time (to put all upper and lower

endpoint events in Q)

Each of the O(n+ k) events takes O(logn) time

The algorithm takes O(n logn+ k logn) time

If k = O(n), then this is O(n logn)

Note that if k is really large, the brute force O(n2) time algorithm is

more efficient

61

Efficiency

Question: How much storage does the algorithm take?

62

Efficiency

Question: Given that the event queue is a binary tree that may store

O(k) = O(n2) events, is the efficiency in jeopardy?

63

Degenerate cases

How do we deal with degenerate cases?

For two different events with the same y-coordinate, we treat them

from left to right⇒ the “upper” endpoint of a horizontal line segment

is its left endpoint

64

Degenerate cases

How about multiply coinciding event points?

p

LetU(p) and L(p) be the line segments that have p as upper and

lower endpoint, andC(p) the ones that contain p

Question: How do we handle this multi-event?

65

Degenerate cases

How efficiently is such a multi-event point handled?

If |U(p)|+ |L(p)|+ |C(p)|= m, then the event takes O(m logn)
time

What do we report?

• The intersection point itself

• Every pair of intersecting line segments

• The intersection point and every line segment involved

Question: What is the output size in each of these three cases?

66

Degenerate cases

Output size in case we report

• the intersection point itself: O(1)

• every pair of intersecting line segments: O(m2)

• the intersection point and every line segment involved: O(m)

67

Degenerate cases

Since m = O(n), does this imply that the whole algorithm takes

O(k) ·O(m logn) = O(k) ·O(n logn) = O(nk logn) time?

No, we can bound ∑m over all intersections by the number of edges

that arise in the subdivision: Note ∑m ≤ 2E

Euler’s formula givesV −E +F ≥ 2 for the subdivision induced by

the line segments

68

Degenerate cases

Every face has at least 3 edges and every edge contributes to exactly 2

faces, so 2E ≥ 3F

Combine with Euler’s formulaV −E +F ≥ 2, and we get:

E ≤ 3V −6

NoteV ≤ 2n+ k with k intersections, so E ≤ 6n+3k−6

We get ∑m ≤ 2E ≤ 12n+6k−12

69

Result

For any set of n line segments in the plane, all k intersections can be

computed in O(n logn+ k logn) time, and within this time bound,

we can report for every intersection which line segments are involved

70

Conclusion

For every sweep algorithm:

• Define the status

• Choose the status structure and the event queue

• Figure out how events must be handled (with sketches!)

• To analyze, determine the number of events and how much time

they take

Then deal with degeneracies and incorporate them carefully

71

	Motivation
	Map overlay

	Line segment intersection
	Problem
	Output-sensitive algorithms
	Some attempts

	Plane sweep
	Introduction
	Events, status, structures
	Event handling
	Efficiency

